
Computer Graphics notions and CG
programming

 1/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/01_cg_subfields/index.html

Computer Graphics main SubFields
Modeling
How to create static shapes

Animation
How to create and author time varying shapes

Rendering
How to generate 2D images from 3D data

 2/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/02_representing_surface/index.html

Representing 3D shapes for Graphics Applications
Volume representation

+ Accurate, handle density

Surface representation

+ Focus on visible part
+ Fast GPU rendering, low memory footprint

=> Computer Graphics: Mostly focus on representing Surfaces
=> Scientific visualization: Volume data

 3/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/01_cg_subfields/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/01_explicit_implicit/index.html

Two main representations for surfaces
Explicit representation

Parametric map

S

u

v

S(u,v)

+ Neighborhood information

Implicit representation

Isosurface of scalar field

+ Topological modification

 4/20

S(u, v) = (x(u, v), y(u, v), z(u, v)) S = {(x, y, z) ∈ R ∣F (x, y, z) =3 0}

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/02_representing_surface/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/03_explicit_implicit_sphere/index.html

Two main representations for surfaces
Example for a sphere

Explicit representation

Parametric map

Implicit representation

Isosurface of scalar field

 5/20

S(u, v) = (x(u, v), y(u, v), z(u, v))

S(u, v) = ​ ​

⎩⎪
⎨
⎪⎧ x(u, v) = R sin(u) cos(v)

y(u, v) = R sin(u) sin(v)
z(u, v) = R cos(u)

S = {(x, y, z) ∈ R ∣F (x, y, z) =3 0}

F (x, y, z) = x +2 y +2 z −2 R2

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/01_explicit_implicit/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/04_problematic/index.html

Difficulty of surface representation using function
Which function can represent this shape ?

 6/20

S(u, v) = ?

F (x, y, z) = ?

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/03_explicit_implicit_sphere/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/05_objective/index.html

Objective of surface representation
Main Idea => Use of piecewise approximation

Ideal surface representation
- Approximate well any surface
- Require few samples
- Can be rendered efficiently (GPU)
- Can be manipulated for modeling

Example of models:
- Mesh-based: Triangular meshes, Polygonal meshes, Subdivision surfaces
- Polynomial: Bezier, Spline, NURBS
- Implicit: Grid, Skeleton based, RBF, MLS
- Point sets

=> For projective/rasterization render pipeline : always render triangular meshes at the end

+ Simplest representation
+ Fit to GPU Graphics render pipeline
- Requires large number of samples: complex modeling
- Tangential discontinuities at edges 7/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/04_problematic/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/06_mesh_description/index.html

Meshes
Simplest possible representation of 3D surfaces: set of triangles

Described as a triplet: (Vertices, Edges, Faces)

 Vertex

 Edge

 Face

 8/20

S = (V, E, F)

V = (v ​, ..., v ​)1 N

V = (v ​, ..., v ​) ∈1 N ​e
(V)2 N ​e

F = (f ​, ..., f ​) ∈1 N (V)3 N ​f

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/05_objective/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/07_mesh_encoding/index.html

Mesh encoding
Exemple for a tetrahedron

- 1st Solution: Soup of polygons

triangles = [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 0.0, 1.0),
 (0.0, 0.0, 0.0), (0.0, 0.0, 1.0), (0.0, 1.0, 0.0),
 (0.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 0.0, 0.0),
 (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]

- 2nd solution: Geometry, Connectivity

geometry = [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
connectivity = [(0,1,3), (0,3,2), (0,2,1), (1,2,3)]

=> Prefered solution
+ more space efficient

+ modifying 1 vertex = 1 operation

 9/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/06_mesh_description/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/08_mesh_encoding_c++/index.html

Mesh buffer encoding in C++

#include <vector>
#include <array>

struct vec3 {float x,y,z;};
using index3 = std::array<unsigned int, 3>;

int main()
{
 std::vector<vec3> geometry = { {0.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f},
 {0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f} };
 std::vector<index3> connectivity = { {0,1,3}, {0,3,2}, {0,2,1}, {1,2,3} };

 return 0;
}

 10/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/07_mesh_encoding/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/09_mesh_file/index.html

Example of 3D Mesh file
v -0.000000 0.620276 0.108446
v -0.000000 0.685780 0.104094
v 0.011128 0.685780 0.102245
v 0.014793 0.620276 0.106125
v 0.034724 0.684975 0.079817
v 0.040413 0.620278 0.086828
v 0.029160 0.619800 0.099405
v 0.024110 0.685194 0.093530
v 0.046714 0.554312 0.085764
v 0.033793 0.547222 0.100284
v 0.015067 0.542780 0.113608
v -0.000000 0.541146 0.117759
v 0.051177 0.430214 -0.047903
v 0.049948 0.435812 -0.035967
v 0.028863 0.449897 -0.050037
v 0.028839 0.444346 -0.059194
v 0.017691 0.251925 0.023686
v 0.034131 0.252216 0.014535
v 0.036689 0.275442 0.012672
v 0.015166 0.271140 0.025837
v 0.014869 0.285441 0.024957

Open question: How to display it
efficiently on screen?

 11/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/08_mesh_encoding_c++/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/01_rendering_surface/index.html

How to render surfaces
Ray tracing

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

- Throw rays from light-sources/camera
- Intersect rays with 3D shapes
- Pixel-wise computation

+ Photo-realistic rendering
(Soft shadows, reflection, caustics)

+ Handle general surfaces
- High computational cost

=> Restricted to offline rendering (but developing
more and more)

Projection/Rasterization

- Assume shapes made of triangles
1. Project each triangle onto camera screen space
2. Rasterize projected triangle into pixels

- Triangle-wise computation

+ Efficiently implemented on GPU
- Limited to triangles
- No native effects (shadows, transparency,
etc)

=> The standard real time rendering with GPU 12/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/09_mesh_file/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/02_rasterization/index.html

Projection/Rasterization
Object made of triangles only

1. Project vertices of triangles

focal
point

screen

3D triangle

p' p

- Projection computed as matrix operation
(projective space)

2. Rasterization

- Discrete geometry
- Interpolate attributes (colors, etc) on each
pixel

=> At interactive frame rate (25 fps)
- Project all triangles of shapes
- Fill all pixels of each projected triangle

 13/20

p =′ M p

≥

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/01_rendering_surface/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/00_title/index.html

Quick fundamental notions for practical
3D programming

- Affine transform as 4D matrices
- Perspective and projective space
- Illumination and normals

 14/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/02_rasterization/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/01_introduction/index.html

Affine transforms and 4D vectors/matrices
Preliminary note

- We use a lot affine transformations to place shapes in 3D space
Translation, Rotation, Scaling

- In CG vectors are often expressed in 4D, and matrices are .

=> Reason: Affine transforms can be expressed linearly (with matrices) in 4D

 15/20

4 × 4

p = ​ ​ ​ M =

⎝
⎜
⎜⎜
⎛ x

y

z

1 ⎠
⎟
⎟⎟
⎞

​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ m ​00

m ​10

m ​20

0

m ​01

m ​11

m ​21

0

m ​02

m ​12

m ​22

0

t ​x

t ​y

t ​z

1 ⎠
⎟
⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/02_2d/index.html

Affine transform in 2D
General principle in the 2D case

Example for a point

Rotation Scaling Translation (not linear)

Cannot express conveniently composition b/w several rotation, scaling, translation.

Trick - Add an extra coordinates to points (homogeneous coordinates).

Then translation can be expressed linearly , with

Similarily with rotation and scaling .

 16/20

p = (x, y)

R = ​ ​ ,(
cos(θ)

− sin(θ)
sin(θ)
cos(θ)

) S = ​ ​ ,(
a

0
0
b

) (x + t ​, y +x t ​)y

p = (x, y, 1)

p =′ T p p =′
​ ​ ​ ​ =

T

​​ ​ ​ ​ ​

⎝

⎛ 1
0
0

0
1
0

t ​x

t ​y

1 ⎠

⎞

⎝

⎛ x

y

1 ⎠

⎞
​ ​ ​

⎝

⎛ x + t ​x

y + t ​y

1 ⎠

⎞

R = ​ ​ ​ ​ ​ ,
⎝

⎛ cos(θ)
− sin(θ)

0

sin(θ)
cos(θ)

0

0
0
1 ⎠

⎞
S = ​ ​ ​ ​ ​

⎝

⎛ a

0
0

0
b

0

0
0
1 ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/03_matrix_extra_dimension/index.html

Affine transform matrix
With the extra dimension (in 2D):

Translation , rotation , scaling can be composed as matrix products representation

ex. .

 : linear part (rotation and scaling); : translation part

Similar in 3D but with 4-components vectors, and matrices.

 - represents 3D position

 - represents 3D affine transformation (rotation, scaling, translation)

Note: vectors and points can be expressed
- 3D point - translation applies.
- 3D vector - translation doesn't apply.

 17/20

T R S

M = T ​ R ​ S ​ T R ​ S ​ …0 0 0 1 1 1 M = ​(​ ​ ​

m ​00

m ​10

0

m ​01

m ​11

0

t ​x

t ​y

1
)

m ​ij t ​x/y

4 × 4

p = (x, y, z, 1)

M = ​ ​ ​

⎝
⎜⎜
⎛

​ ​ ​ ​

m ​00

m ​10

m ​20

0

m ​01

m ​11

m ​21

0

m ​02

m ​12

m ​22

0

t ​x

t ​y

t ​z

1 ⎠
⎟⎟
⎞

(x, y, z, 1)
(x, y, z, 0)

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/02_2d/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/01_projective_space/index.html

Perspective and projective space
Modeling perspective projection requires division.

ex. in 2D (1D projection)

image

focal
point

p

p'

xx'

y

y'

 (: focal)

Linear model using 3D vectors in projective space.

considering that the last coordinate must always be
normalized to 1 (for points).

Projective space
- Real points lie on
- Vectors lie on

Real coordinates of points are obtained after normalization (division by z).

 18/20

y =′ x ​ =′
x
y f ​

x
y f

p =′
​ ​ ​ =(

f

f ​

x
y

1
)

normalization

​= (
fx

fy

x
) ​ ​ ​(

f

0
1

0
f

0

0
0
0

) (
x

y

1
)

z = 1
z = 0

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/03_matrix_extra_dimension/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/02_perspective_matrix/index.html

Perspective matrix
Perspective space : Allows perspective projection expressed as matrix.

Common constraints (in OpenGL)
- Wrap the viewing volume (truncated cone with rectangular basis called frustum) (to a cube.

- : view angle
- frustum .

(-1,-1,-1)

(1,-1,-1)

(1,1,-1)

(-1,1,-1)

(-1,1,1)
(1,1,1)

(1,-1,1)

(-1,-1,1)

-z

znear

zfar

x

y

z

x

y
z

World space View space

M

In practice
=> You must define ,
=> should be as small as possible for maximum depth precision.

To which view space coordinates are mapped 3D world space points at , ?

 19/20

z ​, z ​, θ)near far

θ

p = (x, y, z, 1) ∈ ⇒ p =′ (x , y , z , 1) ∈′ ′ ′ [−1, 1]3

M = ​ ​ ​ ​ ​ ​ ​

⎝
⎜⎜
⎛ f

0
0
0

0
f

0
0

0
0
C

−1

0
0
D

0 ⎠
⎟⎟
⎞ f = 1/ tan(θ/2)

L = z ​ − z ​near far

C = (z ​ + z ​)/Lfar near

D = 2 z ​ z ​/Lfar near

z ​near z ​far

z ​ −far z ​near

θ

z ​near z ​far

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/01_projective_space/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/03_normals_illumination/index.html

Per-vertex normal and illumination
For smooth looking meshes, we define a normal per-vertex.

- Vertices are seen as samples on a smooth underlying surface

- Normals are used for illumination
ambiant, diffuse, specular components

- Phong shading interpolates normals on each
fragments of triangles, and compute illumination.

Possible automatic computation of normals: averaged normals of surrounding triangle.

, : neighboring

triangles.

 20/20

n ​ =k ​

∥ ​∥∑j∈V ​k
n̂j

​ ​∑j∈V ​k
n̂j

V ​k

n ​k

​n̂j

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/02_perspective_matrix/index.html

