Computer Graphics notions and CG
programming

1/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/01_cg_subfields/index.html

Computer Graphics main SubFields

Modeling
How to create static shapes

Animation
How to create and author time varying shapes

Rendering
How to generate 2D images from 3D data

2/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/02_representing_surface/index.html

Representing 3D shapes for Graphics Applications

Volume representation Surface representation

= = ey = A '
= e e i e
i

B

+ Accurate, handle density + Focus on visible part
+ Fast GPU rendering, low memory footprint

=> Computer Graphics: Mostly focus on representing Surfaces
=> Scientific visualization: Volume data

3/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/01_cg_subfields/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/01_explicit_implicit/index.html

(

Two main representations for surfaces

Explicit representation Implicit representation
S(u,v) = (2(u,v), y(u,v), 2(w,v)) S={(z,y,2) € R* | F(z,y,2) = 0}

Parametric map Isosurface of scalar field

S(u,v)
> >
T %
v? }’ -

+ Neighborhood information + Topological modification

4/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/02_representing_surface/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/03_explicit_implicit_sphere/index.html

(

Two main representations for surfaces

Example for a sphere

Explicit representation Implicit representation

S(u,v) = (z(u,v), y(u,v), z(u,v)) S ={(z,y,2) € R’ | F(z,y, z) = 0}

Parametric map Isosurface of scalar field

z(u,v) = Rsin(u) cos(v) Flz,y,z) =z +y° +2° — R’
S(u,v) = ¢ y(u,v) = Rsin(u) sin(v)

z(u,v) = Rcos(u)

5/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/01_explicit_implicit/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/04_problematic/index.html

s

Difficulty of surface representation using function

Which function can represent this shape ?

{ \ |
\ \\
X l ; a({
S(u,v) =7
F(x,y,z) =7

6/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/03_explicit_implicit_sphere/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/05_objective/index.html

Objective of surface representation

Main Idea => Use of piecewise approximation

Ideal surface representation
- Approximate well any surface
- Require few samples
- Can be rendered efficiently (GPU)
- Can be manipulated for modeling

Example of models:
- Mesh-based: Triangular meshes, Polygonal meshes, Subdivision surfaces
- Polynomual: Bezier, Spline, NURBS
- Implicit: Grid, Skeleton based, RBF, MLS
- Point sets

=> For projective/rasterization render pipeline : always render triangular meshes at the end

+ Simplest representation
+ Fit to GPU Graphics render pipeline
- Requires large number of samples: complex modeling

- Tangential discontinuities at edges 7/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/04_problematic/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/06_mesh_description/index.html

Meshes aa
O ek

Simplest possible representation of 3D surfaces: set of triangles

Described as a triplet: (Vertices, Edges, Faces)

S=W,¢E,F)
@ Vertex
V = (1}17 °°'7?JDJ)
NV 7 Edge
X AN Y = (vq,...,0n.) € 2) Ne
R SOPASANN (v1, ., 08,) € (V7)
SN ARV AVAVAAANY;
%éVAVAVAVAVAVAVQ'ﬁ@v A Face
" F = (fiy e fr) € (VY
— 9 eoey

8/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/05_objective/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/07_mesh_encoding/index.html

Mesh encoding

Exemple for a tetrahedron

- 1st Solution: Soup of polygons

triangles = [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 0.0, 1.0),
(0.0, 0.0, 0.0), (0.0, 0.0, 1.0), (0.0, 1.0, 0.0),
(0.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 0.0, 0.0),
(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]

- 2nd solution: Geometry, Connectivity

geometry = [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
connectivity = [(0,1,3), (0,3,2), (0,2,1), (1,2,3)]

=> Prefered solution

+ more space efficient

+ modifying 1 vertex = 1 operation

9/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/06_mesh_description/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/08_mesh_encoding_c++/index.html

Mesh buffer encoding in C++

#include <vector>
#include <array>

struct vec3 {float x,y,z;};
using index3 = std::array<unsigned int, 3>;

int main()

11,2,3} };

{
std: :vector<vec3> geometry = { {0.0f, 0.0f, 0.0}, {1.0f, 0.0f, 0.0},
{0.0f, 1.0f, 0.0f}, {0.0f, 0.0f, 1.0f} };
std: :vector<index3> connectivity = { {0,1,3}, {0,3,2}, {0,2,1},
return 0;
b

10/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/07_mesh_encoding/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/09_mesh_file/index.html

| Example of 3D Mesh file

v -0.000000 0.620276 0.108446
v -0.000000 0.685780 0.104094
v 0.011128 0.685780 0.102245
v 0.014793 0.620276 0.106125
v 0.034724 0.684975 0.079817
v 0.040413 0.620278 0.086828
v 0.029160 0.619800 0.099405
v 0.024110 0.685194 0.093530
v 0.046714 0.554312 0.085764
v 0.033793 0.547222 0.100284
v 0.015067 0.542780 0.113608
v -0.000000 0.541146 0.117759
v 0.051177 0.430214 -0.047903
v 0.049948 0.435812 -0.035967
v 0.028863 0.449897 -0.050037
v 0.028839 0.444346 -0.059194
v 0.017691 0.251925 0.023686
v 0.034131 0.252216 0.014535
v 0.036689 0.275442 0.012672
v 0.015166 0.271140 0.025837
v 0.014869 0.285441 0.024957

Open question: How to display it
efficiently on screen?

11/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/08_mesh_encoding_c++/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/01_rendering_surface/index.html

How to render surfaces

Ray tracing

Image

Camera / 8 Light Source

Es

View Ray

]

/\ \>Scene Object

- Throw rays from light-sources/camera

- Intersect rays w

1ith 3D shapes

- Pixel-wise computation

+ Photo-realisti

c rendering

(Soft shadows, reflection, caustics)
+ Handle general surfaces
- High computational cost

=> Restricted to offline rendering (but developing

more and more)

Projection/Rasterization

- Assume shapes made of triangles
1. Project each triangle onto camera screen space
2. Rasterize projected triangle into pixels

- Triangle-wise computation

+ Efficiently implemented on GPU

- Limited to triangles

- No native effects (shadows, transparency,
etc)

=>The standard real time rendering with (1[)1[2]/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/03_mesh/09_mesh_file/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/02_rasterization/index.html

Projection/Rasterization

Object made of triangles only

1. Project vertices of triangles

3D triangle

- Projection computed as matrix operation
(projective space p' = M p)

2. Rasterization

- Discrete geometry
- Interpolate attributes (colors, etc) on each
pixel

=> At interactive frame rate (> 25 fps)
- Project all triangles of shapes

- Fill all pixels of each projected triangle

13/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/01_rendering_surface/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/00_title/index.html

Quick fundamental notions for practical
3D programming

- Affine transform as 4D matrices
- Perspective and projective space
- Illumination and normals

14/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/01_graphics_programming/04_render_surface/02_rasterization/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/01_introduction/index.html

(

Affine transforms and 4D vectors/matrices

Preliminary note

- We use a lot affine transformations to place shapes in 3D space
Translation, Rotation, Scaling

- In CG vectors are often expressed in 4D, and matrices are 4 X 4.

=> Reason: Affine transforms can be expressed linearly (with matrices) in 4D

x Moy Mo1 Moz Ty

p = Y M | 0 M M ty
Z Moy Mo Moo T,
1 0 0 0

15/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/02_2d/index.html

(

Affine transform in 2D

General principle in the 2D case

Example for a point p = (z, y)

cos(f) sin(0)

Rotation R = (—sin(f) cos(0)

) , Scaling S = (g 2) , Translation (€ + t.,y + ty) (not linear)

Cannot express conveniently composition b/w several rotation, scaling, translation.

Trick - Add an extra coordinates to points p = (&, ¢, 1) (homogeneous coordinates).

1 0 ¢, T T+,
Then translation can be expressed linearly p’ = T p, with p’ = 0 1 ¢, Y — Y+,
0 0 1 1 '
T
cos(f) sin(f) O a 0 O
Similarily with rotation R = | —sin(f) cos(#) 0 |, andscalingS=| 0 b 0
0 0 1 0 0 1

16/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/03_matrix_extra_dimension/index.html

Affine transform matrix

With the extra dimension (in 2D):
Translation T, rotation R, scaling S’ can be composed as matrix products representation
Moo Mo1 | Ly
ex. M = T() R() S() Tl Rl Sl « o M = mip9 M1 ty
0 0 1

m;; : linear part (rotation and scaling); ¢/, : translation part

Similar in 3D but with 4-components vectors, and 4 X 4 matrices.

p = (x,vy, 2, 1) - represents 3D position

Mmoo M1 M2
mip M1 M2
Moy Mo Moo

0 0 0

8

M = - represents 3D affine transformation (rotation, scaling, translation)

~ o~
<

Note: vectors and points can be expressed
- 3D point (:B, Y, 2, 1) - translation applies.
-3D vector (x, y, 2, 0) - translation doesn't apply.
17/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/02_2d/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/01_projective_space/index.html

Perspective and projective space

Modeling perspective projection requires division.

ex. in 2D (1D projection)

A
y p'
Image
y p.
focal
oint
P o
X X

Projective space
- Real points lieon z = 1

-Vectorslieonz = 0

Yy = (f: focal)

/ Iy
I

f Y
L
Linear model using 3D vectors in projective space.

f fx f 0 O
=) = (f)=(0 70
(1) nornmtion (£) (1 0 O) (

considering that the last coordinate must always be
normalized to 1 (for points).

Real coordinates of points are obtained after normalization (division by z).

|

e 8

18/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/01_affine_transform/03_matrix_extra_dimension/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/02_perspective_matrix/index.html

Perspective matrix

Perspective space : Allows perspective projection expressed as matrix.

Common constraints (in OpenGL)
- Wrap the viewing volume (truncated cone with rectangular basis called frustum) (Znear, Zfar, 9) to a cube.
- 0: view angle
-p=(z,y,2,1) € frustum = p' = (2, ¢/, 2/,1) € [-1,1]°.

f 0 0 O f=1/tan(6/2)
M = 0 f 0 0 L = zpear — Z far
- 0 0 C D C = (2far + Znear)/ L
0 0 -1 O D =224 2pear/ L

View space

In practice
=>You must define Zpeqr, Zfar

=> Zfar — Znear Should be as small as possible for maximum depth precision.

To which view space coordinates are mapped 3D world space points at Zpear, Zfar ?

19/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/01_projective_space/index.html
file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/03_normals_illumination/index.html

Per-vertex normal and illumination

For smooth looking meshes, we define a normal per-vertex.

- Vertices are seen as samples on a smooth underlying surface
-N orm?ﬂs areoused for illumination K. + K + K _
ambiant, diffuse, specular components

- Phong shading interpolates normals on each
fragments of triangles, and compute illumination.

Possible automatic computation of normals: averaged normals of surrounding triangle.

oy T
nE = Zjevk A] , Vi: neighboring
122 5en, 75l
triangles.

20/20

file:///home/damien/epita_ani3D/lecture/_site/01_reminder/pdf/00_reminder/02_fundamental_notions/02_projection/02_perspective_matrix/index.html

