Affine Transformation

1/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/01_affine_linear_deformation/index.html

(

Affine/Linear Transformation

Most used deformations p' = f(p)
can be represented by a matrix — can be sent as uniform parameter to the shader.

- In standard 3D coordinates p = (:13, Y, z)
p=Lp+t
L: linear component (3 X 3 matrix)
t: translation

- In homogeneous coordinates p = (x, y, 2, 1)

I __ Lez Lz Lz | tz
A: 4 X 4 matrix “\Vol1 /) | L. L, L.|¢t
0 0 0 1

Properties:
- det(L): Change of volume when applying L to a shape

-LT'L = 1 = Isometry

2/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html

(

Affine/Linear Deformations

Translation

t(p) = (x+tz,y +t,,z+1t;)

1 0 0 ¢,
1 0 1 0 ¢,
I'= 0 0 1 ¢,
0 0 0 1
Shearing
Shmy(p) — (:Ij B)‘yayv Z)
shy.(p) = (x + Az,y, 2)
= (z,y + Az, 2)

shya (p)

Usually avoided in Graphics
Note: det(Sh) = 1 — constant volume (but no isometry)

Sh,, =

Scaling

o O oy

q —

o = O O

o O O

Shmz

s(p) = (sz x,s, Y, s, 2)

S O RO

O~ O M

_—o O O

Rotation
Several possible representations
(see later)

Note: Isometry

——

Sh, =

OO > =
O O = O
o = O O
_o O O

N—

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/01_affine_linear_deformation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/03_rotation/index.html

Rotations

3D rotations have 3 dof, No unique representation

Matrix Euler Angles Axis angle Quaternion
Rep Ray Ras 3 angles: (a, 3, Y) (n,d) qg=(z,y,z,w)
R = R, R R, .
R. R. R, = (n sin (3) ,cos (3))
e Ty TRz Composition of rotation (+) Meaningfull 2 2
RIR=1 around basic axes parameters (+) Composition and
det(R) =1 (-) No direct composition interpolation

Not unique (x-v-z, V-Z-X, X-V-X' . ..
que (X-y-2, -2, X-yX, (-) Less intuitive

: X-Z-X), ...
(+) Computationaly 5) components

convenient (+) Meaningfull parameters

(-) Non-explicit dof, (-) Gimbal-lock

redundancies

4/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/01_order/index.html

Cautions with transformations order

Take care, order of operation does matter !
Rotation 7, Translationt: rot #tor = M; =TR # RT =M,

Take care (2): transformation matrices applied to coordinates from right to left.

A
1|t R |0 R\t N\
wne (V) (50)-(H) D
First rotates, then translates R
. (R|O 11t\ (R|Rt \
MZ_RT_(O 1)(0 1)_(0 1) 4
First translates, then rotates /
Rotation always happens around the origin. »>

| Beware: Some libraries (old OpenGL, Three.js) apply transformation from "left to right" using transposed matrix multiplication

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/03_rotation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/02_exercise/index.html

Affine Transformation Exercises

Q. Express the affine transform (as a4 X 4 block matrix) corresponding to a rotation R applied around an arbitrary

position Pg in space.

>M = ...

o R

Q. Consider a shape defined by a triangular mesh with vertex positions (pi),,;e[l, N]-
> Express the affine transform allowing to rotate the shape around its barycenter.

6/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/01_order/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/03_exercise/index.html

(

Affine Transformation Exercises

SR |t
Q. Consider the affine transform M parameterized by a scaling s, a M= (0 1)
rotation R, and a translation ¢. /\
> Express the inverse matrix M ~! with respect to s, R and ¢ D
M-l

7/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/02_exercise/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/01_quaternion/index.html

Interpolating rotation

Do not use componentwise-interpolation on rotation matrix
—> interpolate in quaternion space

Can use either:
- SLERP - Spherical Linear Interpolation
sin((1 — t){2 sin (%)
q(t) = ((AL 41 : (#£)
sin(£2) sin(€2)
Between two unit quaternions q1, Q2

g2, withcos(f2) =q1 - qo

- LERP - Linear Interpolation
q(t) = 2 %
1225 a4l

When blending multiple quaternions q; with weights o;

Rem.
When interpolating b/w rotations and positions:
Use quaternion with rotation, componentwise-interpolation on position

8/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/03_exercise/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/03_polar_decomposition/index.html

Handling affine transformation : Polar Decomposition

Key-pose transforms are often given as 4 X 4 matrices.

How can we interpolate b/w affine transforms? o
- Splitting linear M/translation part is easy. SN

_ I
- Problem: interpolating the linear part M R (L
mixes rotation, scaling, shearing R

= Split M into: rotation part, and scaling/shearing. ﬁ—
- Interpolate rotation with quaternion (ex. SLERP/LERP) B

- Scaling/shearing using componentwise interpolation (ex. linear). O o /_

- Polar decomposition: M=RD ll
- R: Rotation matrix

- D: Positive semi-definite matrix /8 L= o
[K. Shoemake and T. Duff, Matrix Animation and Polar Decomposition. Graphics Interface 92. | (_ T

- Polar decomposition is obtained from SVD ,““
SVD(M) = WS V7 with| R = WV | D = VEV?

- Or numerically, R can be computed using the following
iterative scheme

Ro =M, Rii =05 (Ri+ (R ")

http://research.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/01_quaternion/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/04_final_algorithm/index.html

Handling affine transformation

Algorithm to interpolate between two general 4 X 4 matrices My, My

1

Extract translation p1, pg from My, M.

. Compute R1, R2 (3 X 3 rotation matrices), and D1, D (3 X 3 scaling/shearing matrices) from M, Mo
. Interpolate linearly position and scaling/shearing p(t) = (1 — t) p; + t po, D(t) = (1 — t) D1 4+ t D,

. Compute quaternions g1, 2 from Rl, Rz

: Mzy—M,y, xz _iVlzx Myz—M, _

. Compute q(t) =SLERP(q1, ¢, t)
. Convert back to matrix q(t) — R(t)

. Compute final matrix M (t) = R(t) D(t) with translation p(t).

10/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/03_polar_decomposition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/01_opengl/index.html

Camera and OpenGL

In OpenGL: no real notion of "camera”
Unique viewpoint - cube (z,y, z) € [—1, 1] - Normalized Device Coordinate (-1,1,-1)

Left-right/x, Bottom-up/y, Front-back/z (toward negative z) (-1,1,1) (1,1,-1)

No perspective (displays (x,y) for the smallest z)

Any camera effect (position, orientation, perspective)

must be coded "manually" in the shader.
All these effects can be represented as matrices.

Three common matrices (1,-1,1)

Model matrix . p = Projection X View x Model X p
Affine transform - specific to a shape. —

Local object coordinates to world space. ModelV iew

View matrix

Rigid transform - position/orientation of the camera in the scene.
World space to camera/view/eye space

Projection matrix

Perspective matrix - map frustum to normalized cube. (/or ortho projection)
Camera space to Normalized Device Coordinate (clip/screen space) 11/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/04_final_algorithm/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02_camera_representation/index.html

View representation as matrix

Camera parameterized by:

A center ¢; right, up, front unit vectors
expressed in global coordinates

Frame matrix:

Transform unit coordinates into camera vectors

Frame x (1,0,0,0) = right
Frame x (0,1,0,0) = up

Frame x (0,0,1,0) = — front

Frame x (0,0,0,1) =c¢

Matrix of column-oriented vectors of camera directions

Frame=

(

\

right up

o
0 0

— front

|
0

)

C

y

X

O
0

C
1

)

YA

World

space

Frame

e

Eye

X
>

front

View

Camera

View matrix: inverse of the Frame matrix

Transforms the camera vectors into the unit coordinates

View x right = (1,0,0,0)
View x up = (0,1,0,0)
View x — front = (0,0,1,0)
View x ¢ = (0,0,0,1)

Orientation O can be read on the rows

(

View=

(. ..
\ 0

right
up
— front

0

12/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/01_opengl/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02b_camera_question/index.html

Camera in shader - Question

Q. In a vertex shader the View matrix is passed as uniform parameter
How can you compute the position of the camera ?

A usefull function to set a point of view is the standard look_at(eye, center, up)
- eye: position of the viewer
- center: position that the viewer is looking at
- up: a direction representing the "vertical direction" of the viewer.

Q. How to compute the View matrix from the look_at parameters ?

13/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02_camera_representation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/01_spherical/index.html

Interacting with camera

Camera orientation has 3 degrees of freedom (+ 3 dof in position)
How to handle a camera orientation using a mouse (2-dof) ?
Assuming a freely oriented camera

Common approaches

"Spherical camera"/coordinates (6, ¢)

(+) Good to easily "turn around" oriented structure
(-) Lacks a dof: No "twist": position on the unit sphere force the angle
Not adapted to turn around non-oriented/badly-oriented objects.

Spherical coordinates + twist (ex. roll, pitch, yawn)

(+) Precise and complete control
(-) Require an additional key/controler to the mouse to control the 3 dof

Correct orientation

Bad orientation of the shape

Example of "Spherical camera"

spherical camera is "stuck" in this

orientation

14/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02b_camera_question/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/02_trackball/index.html

Interacting with camera - ArcBall/Trackball metaphore

Other approach: ArcBall/Trackball behavior e
3 dof: left/right, top/down, but also twist

Idea: Use the 2D cursor position as "3D point on the trackball"

Motion between 2 cursor positions = 3D Rotation applied to the ball
[K. Shoemake. A User Interface for Specifying Three-Dimensional Orientation Using a Mouse. Graphics Interface, 1992. |

. ce
Algorithm: | oo \ ¢0°
Inputs p1 = (pm,ply); b2 = (p2£137 pzy) in screen coord. 20 Xo)
q1/2 = AchallProjection(p1/2) X L v
R=rotation between vectors (ql, qz) r// g \\\
\

ArcBallProjection(p) Y ,II \
d =norm(p) | } .
. | 1
if(d<1 / \/i) \ pl.@fu_se_,’_ 1------ ’@Eﬂon

1= (p. VI~ &) N S B ol
else // hyperbola AN

q = (p,1/(2d)) T~
return q

Note: the hyperbola smoothly extends the sphere in the entire screen. 15/35

https://graphicsinterface.org/wp-content/uploads/gi1992-18.pdf
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/01_spherical/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/03_trackball_results/index.html

s

Interacting with camera - ArcBall/Trackball metaphore

Natural way to rotate around a shape

(+) No privilegiated axis
No reference configuration, works in incrementing rotations
Behavior is orientation invariant

(-) Less precise than individual dof control
Drift of twist when moving back and forth

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/02_trackball/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/00_title/index.html

Rotations

17/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/03_trackball_results/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/01_representations/index.html

Rotations

3D rotations have 3 dof, No unique representation

Matrix Euler Angles Axis angle Quaternion
o gww ny ng 3 angles: (a, 3, Y) (n,d) qg=(z,y,z,w)
-\ R, R, R. = (n sin (5) ,cos (3))
g ey ThRE Composition of rotation 2 2
RTR=1 around basic axes
det(R) = 1

18/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/01_definition/index.html

Rotation: Focus Euler angles

Three consecutive rotations along fixed axis along (m, Y, z) coordinates.

Can use basic rotation matrices composition

1 0 0 cos(8) 0 sin(p) cos(y)
R.,=| 0 cos(a) sin(a) R, = 0 1 0 R, = —sin(y)
0 —sina) cos(a) —sin(8) 0 cos(B) 0

Multiple Euler angles conventions
- Proper Euler : z-x-3, X-y-X, y-2-Y, ...

- Trait-Bryan : X-y-z, 2-Y-X, X-2-Y, ...

Take care when exporting/importing/parsing between Softwares !

Pro
- Combination of rotation around known axis
- Comprehensive parameters (3 dof)

- Animators can interact with angular curves

- Widely used in robotics

19/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/01_representations/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/02_euler_angle_limitation/index.html

Rotation: Focus Euler angles

Limitations of Euler Angle

- Gimbal Lock when composing b/w some rotations

Loose one degree of freedom in specific configuration

1 0 0 0 0 1 cos(y) —sin(y) O
ex. Ry(a) Ry(m/2) R.(y) = (0 cos(a) —sin(a)) (0 (1) 8) (sin(y) cos(y) (1))

0 sin(a) cos(a)

0 0

1
= (sin(a) cos(y) + cos(a) sin(y) —sin(a) sin(7y) + cos(a) cos(y) 0)
— cos(a) cos(y) + sin(a) sin(y) cos(a) sin(vy) + sin(a) cos(y) 0

0 0 1
:(sin(a+7v) cos(a+7v) O)

—cos(a+7) sin(a++v) 0

http://www.fho-emden.de/~hoffmann/gimbal09082002. pdf

el

20/35

Expect 2-dof, but get 1-dof

- Interpolation of 3 angles possible but not necessarily with

the simplest trajectory.

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/01_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/02_axis_angle/index.html

Rotation: Focus Axis Angle

Any 3D rotation can be represented by
- A unit axis n ‘?% n
- An angle 0

Pro.

- Concise representation: 3 DOF
- Meaningfull parameters
- Describes well the rotation between two vectors

Ex. Rotation between u1 and u9
- Axis of rotationn = (u1 X Uz)/HU1 X qu U,
- Angle of rotation = acos(u - us) S] ¢

- Twist around w9 can be arbitrarily chosen

21/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/02_euler_angle_limitation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/03_rodrigues_formula/index.html

(

Rotation: Focus Axis Angle - Rodrigues n»

Applying a rotation (n, @) to a vector v

vV =) + V|
v =+
= v = v + (cos(f) v. +sin(f)n x v,)

v = (v-n)n
v, =v—(v-n)n

v =(v-n)n-+cos(@)(v—(v-n)n)+sin(f)n x (v— (v-n)n)

= v' =cos(f)v+sin(@)n x v+ (1 —cos(f)) (v-n)n

Rodrigues' rotation Formula

22/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/02_axis_angle/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/04_rodrigues_to_matrix/index.html

(

Rotation: Focus Axis Angle as Matrix

v' = cos(f)v+sin(@)n x v+ (1 —cos(f)) (v-n)n= R(n,0)v

v’ = cos(0)v + sin(0) (n;) x v+ (1—cos(d)) (ny ny n,)v ('nz)

0 —MNn, Ny ni Ne My Mg My
v' =cos(f@)v +sin(f) | n, 0 —n, |v+(1—cos(d)| neny n; nyn, |v

—n, Ny 0 NyN, NyN, ng
~ ~ / —_—_——
K K2

cos(f) +n2(1 — cos(H)) ngyn,(1 — cos(f)) —n,sin(0) n,n,(1 — cos(f)) + n, sin(6)
v' = | mngny(l — cos(8)) + n, sin(H) cos(#) + n; (1 — cos(9)) n,n,(1 — cos(f)) —nzsin(8) | v

ngyn,(1 — cos(f)) —n,sin(0) n,n,(1 — cos(8)) + n, sin(6) cos(f) + n?(1 — cos(h))

23/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/03_rodrigues_formula/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/05_matrix_axis_angle/index.html

Rotation: Focus Axis Angle - Summary
Given a rotation (7, 6) - Corresponding rotation matrix
R(n,0) =1+ sin(6) K + (1 — cos(f)) K2
R(n,0) =
cos(f) + n2(1 — cos(h)) ngyn,(1 — cos(f)) —n,sin(f) n;n,(1 — cos(d)) + n, sin(6)

ngn,(1 — cos(d)) + n, sin(0) cos(#) 4+ n; (1 — cos(6)) n,n,(1 — cos(0)) — n, sin(0)

ngyn,(1 — cos(f)) —n,sin(0) n,n,.(1 — cos(8)) + n, sin(6) cos(0) + n?(1 — cos(h))

Pro
- Concise and general representation
- Expressive parameters in 3D space (axe, angles)

- Efficient rotation and correspondance with matrix

Cons
- No simple composition expression between two rotations.
- No direct interpolation
(well handled by quaternion representation) 24/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/04_rodrigues_to_matrix/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/04_quaternion_definition/index.html

(

Rotation: Focus on Quaternions

Quaternions: generalization of complex numbers.

gq=xi+yj+ zk + w|w real part, (x, y, 2) imaginary (or pure quaternion) part.

We write in short ¢ = (z, ¥y, z, w)

(don't confound with 4D vectors in homogeneous coordinates)

Properties of imaginary basis vectors

i2:j2:k2:_1

ij= —ji=k
jk = —kj =i
ki—= —ik = j
ijk = —1

- Provides the algebraic properties

25/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/05_matrix_axis_angle/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/05_quaternion_basic_operations/index.html

Basics operations on quaternions

- Conjugated quaternion ¢* = (—:I:, —Y, —Z2, w)

- Quaternion norm ||q|| = /g q* = \/2132 + 42 + 22 4+ w?. Unit quaternion satisfies ||q|| = 1.

- Quaternion product

g1 @ =(r1it+yj+ank+tw) (it+ypjt+znktw)= ..

T1W2 + W1Ty + Y122 — 21Y2 Note: Quaternion product is
q1 q2 = Y1y WYz T 21T — T122 - associative: (CI1Q2)(13 — Q1(QZQ3) — 192 G3
Z1W2 + w122 + T1Y2 — Y122 - non-commutative: ¢; g2 # @2

WiW2 — L1L2 — Y1Y2 — 2122

Sometimes interesting to separate real part w from pure quaternion part 8 = (m, Y, z).
- Shorthand vector form q¢ = (s, w)
- Quaternion product in vector form q; qo = (31 Wy + So Wi + 81 X 82, Wy Wy — 81 ° 82)

26/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/04_quaternion_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/06_quaternion_rotation/index.html

Relation between quaternion and rotation

Consider
-a quaternion ¢ = (8, w) of unit norm ||q|| = 1.

-avector v = (v, Uy, U,) assimilated to the pure quaternion ¢, = (v, 0) = (v, vy, v, 0).

Then
-qy = Ry(v) = * is a pure quaternion ¢, = (v, v,,,v.,0)
v q q4v q pure qu Qv 21 Vys Uz
-And v’ = (v, v;, v.) is the rotation of vector v around the axis n = s/||s||, with angle 2 acos(w).

Demonstration
Rq,(v) = (s,w) (v,0) (—s,w) = ... = ((w? —s*)v+2(s-v)s+ 2w (s xv),0)
As||q|| = 1, we can write ¢ = (s, w) = (nsin(¢p), cos(¢)), where ||n|| = 1

Then R, (v) = ((cos®*(¢) — sin®(¢)) v + 2sin®*(¢)(n - v) n + 2 cos(¢) sin(¢) n x v, 0)
N ~~ 7 N’ N\ ~~ /
cos(2¢) 1—cos(2¢) sin(2¢)

= Rodrigues formula for axis 1 and angle 2¢.

The unit quaternion ¢ = (n sin(6/2), cos(6/2)) represents the rotation of angle 8 around the axis n.

27/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/05_quaternion_basic_operations/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/07_quaternion_composition/index.html

(

Composition of rotations

Consider two rotation (Ry, R) associated to their unit quaternions (g1, g2).

The product g1 g9 represents the composition 1 o Rs.

Demonstration

We show that Ry, ¢, (V) = Ry, © R, (v).

Ry e (v) = (0192) v (q192)”

Ry p(v) = (q192) v (g5 97), a5 (q192)" = @5 g1
Raye(v) = @1 (g2 v 43) g1

Ry (v) = q1 Ry, (v) 47 = Ry, 0 Ry (v)

28/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/06_quaternion_rotation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/08_quaternion_matrix/index.html

(

Correspondance quaternion to rotation matrix

The unit quaternion ¢ = (&, y, 2, W) represents the rotation given by the matrix

(1 _ 2(y2 22) z(my _ wz) Z(xz wy))

R = 2(xy +wz) 1—2(z*+2%) 2yz— wz)

2(rz — wy) 2(yz + wzx) 1 —2(z* + y?)

Demonstration
v =R,(v) =qq, ¢ = (w* —s*)v+2(s-v) s+ 2w (s x v),0) withs = (z,y, 2)

V=(w—2* -y —2)w+2(z y z)v(z y z)T+2w(a: Yy 2z)Xo

r’ Ty T2 0 —2
V= (w?—x*—y? —-2)I1+2| 2y y* yz | +2w z 0 —=x v
Tz Yz 2° —Yy X 0

/| __ . 2 2 2 2 __
vV = Ru,withz® +y*+ z° +w* =1 29/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/07_quaternion_composition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/09_quaternion_wrap_up/index.html

Suntlmary - Correspondance quaternion / matrix-
vector

Representation and Operations

3D space Quaternion space
Vector v = (Vg, Uy, V) ¢ = (v,0) = (vg,vy,v,,0)
Rotation R (3 X 3 matrix) q=(z,y,2z,w),|q| =1
Apply rotation to vector Rv qq9, q*
Rotation composition R, R, Q1 Q2

Rotation to Quaternion
Rotation of axis 7 and angle 8 = q = (n sin(#/2), cos(6/2))

Quaternion to Rotation
1—-2(y*+2%) 2(zy — wz) 2(zz + wy)
Unit quaternion ¢ = (x, ¥y, z,w) = R = 2(ry + wz) 1 — 2(z? + 2%) 2(yz — we)
2(xz — wy) 2(yz + wz) 1-—2(z* + y?)

30/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/08_quaternion_matrix/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/00_title/index.html

Interpolation

Rotations

31/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/09_quaternion_wrap_up/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/01_introduction/index.html

Interpolating rotation

Problem: Given 2 rotations 77, 79
- Find rotation r(t) st #(0) = r1, 7(1) = 79, and varies smoothly along ¢

Matrix representation
Componentwise interpolation not adapted

ex.t Ry + (1 — t) Ry is not a rotation: introduce scaling/shearing

The correct formulation to interpolate on the manifold would be R1 exp(tlog(RI R3))
But matrix exponential is complex to compute

Euler angle
Can interpolate the 3 angles separately
(+) Leads to a rotation
(-) Doesn't necessarily follows simplest trajectory

Axis-Angle
No trivial interpolation scheme with different axes

Quaternion
Well adapted (see later)

32/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/00_title/index.html

Interpolation

Affine Transforms

33/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/01_rigid_motion/index.html

Interpolating rigid motion

3D objects have orientation r and position p.
— Need to interpolate both, usually handled separately. ﬁ

Given two key-positions (p1,71) and (p2, T2) in-betweens computed
at time t € |0, 1] as

- Linear interpolation of positions p(t) = (1 — t) p; + t po

- Interpolate rotation with SLERP on quaternions

- Convert (Tl, Tz) — (ql, QQ)
-Compute q(t) = SLERP(qy, q2,t)

- Convert back q(t) — r(t) ﬁ

~

AN

T
.

34/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/02_comparison_quaternion_euler/index.html

(")

Interpolating rigid motion - Comparison

Matrix interpolation Euler angle interpolation Quaternion interpolation

35/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/01_rigid_motion/index.html

