
Affine Transformation

 1/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/01_affine_linear_deformation/index.html

Affine/Linear Transformation
Most used deformations

can be represented by a matrix can be sent as uniform parameter to the shader.

- In standard 3D coordinates

: linear component (3 3 matrix)
: translation

- In homogeneous coordinates

: 4 4 matrix

Properties:
- : Change of volume when applying to a shape
- Isometry

 2/35

p =′ f (p)
→

p = (x, y, z)
p =′ L p + t

L ×
t

p = (x, y, z, 1)
p =′ A p

A ×

det(L) L

L L =T 1 ⇒

A = ​ =(​ ​

L
0

t

1
) ​ ​ ​

⎝

⎛
​ ​ ​ ​

L ​xx

L ​yx

L ​zx

0

L ​xy

L ​yy

L ​zy

0

L ​xz

L ​yz

Lzz

0

t ​x

t ​y

t ​z

1 ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html

Affine/Linear Deformations
Translation

Scaling

Rotation
Several possible representations
(see later)

Note: Isometry

Shearing

...

 ...

Usually avoided in Graphics
Note: constant volume (but no isometry)

 3/35

t(p) = (x + t ​, y +x t ​, z +y t ​)z

T = ​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ 1

0
0
0

0
1
0
0

0
0
1
0

t ​x

t ​y

t ​z

1 ⎠
⎟
⎟⎟
⎞

s(p) = (s ​ x, s ​ y, s ​ z)x y z

S = ​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ s ​x

0
0
0

0
s ​y

0
0

0
0
s ​z

0

0
0
0
1 ⎠

⎟
⎟⎟
⎞

sh ​(p) =xy (x + λy, y, z)
sh ​(p) =xz (x + λz, y, z)
sh ​(p) =yx (x, y + λx, z)

Sh ​ =xy ​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ 1

0
0
0

λ

1
0
0

0
0
1
0

0
0
0
1 ⎠

⎟
⎟⎟
⎞

Sh ​ =xz ​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ 1

0
0
0

0
1
0
0

λ

0
1
0

0
0
0
1 ⎠

⎟
⎟⎟
⎞

Sh ​ =yx ​ ​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ 1

λ

0
0

0
1
0
0

0
0
1
0

0
0
0
1 ⎠

⎟
⎟⎟
⎞

det(Sh) = 1 →

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/01_affine_linear_deformation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/03_rotation/index.html

Rotations
3D rotations have 3 dof, No unique representation

Matrix

(+) Computationaly
convenient
(-) Non-explicit dof,
redundancies

Euler Angles

3 angles:

Composition of rotation
around basic axes

Not unique (x-y-z, y-z-x, x-y-x',
x-z-x', ...)

(+) Meaningfull parameters
(-) Gimbal-lock

Axis angle

(+) Meaningfull
parameters
(-) No direct composition

Quaternion

(+) Composition and
interpolation
(-) Less intuitive
components

 4/35

R = ​ ​ ​ ​ ​

⎝

⎛ R ​xx

R ​yx

R ​zx

R ​xy

R ​yy

R ​zy

R ​xz

R ​yz

R ​zz
⎠

⎞

R R =T I
det(R) = 1

(α,β, γ) (n, θ) q = (x, y, z,w)
= n sin ​ , cos ​((2

θ) (2
θ))

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/01_order/index.html

Cautions with transformations order
Take care, order of operation does matter !

Rotation , Translation :

Take care (2): transformation matrices applied to coordinates from right to left.

First rotates, then translates

First translates, then rotates
Rotation always happens around the origin.

 5/35

r t r ∘ t = t ∘ r ⇒ M ​ =1 T R = R T = M ​2

M ​ =1 TR = ​ ​
=(​ ​

1
0

t

1
) (​ ​

R

0
0
1

) ​(​ ​

R

0
t

1
)

M ​ =2 RT = ​ ​ =(​ ​

R

0
0
1) (​ ​

1
0

t

1) ​(​ ​

R

0
R t

1)

Beware: Some libraries (old OpenGL, Three.js) apply transformation from "left to right" using transposed matrix multiplication

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/03_rotation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/02_exercise/index.html

Affine Transformation Exercises
Q. Express the affine transform (as a block matrix) corresponding to a rotation applied around an arbitrary
position in space.

>

Q. Consider a shape defined by a triangular mesh with vertex positions .
> Express the affine transform allowing to rotate the shape around its barycenter.

 6/35

4 × 4 R

p ​0

M = ...

p0
R

(p ​) ​i i∈[1,N]
p1

p2 p3

p4

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/01_order/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/03_exercise/index.html

Affine Transformation Exercises
Q. Consider the affine transform parameterized by a scaling , a
rotation , and a translation .

> Express the inverse matrix with respect to , and

 7/35

M s

R t

M−1 s R t

M = S R t((0 1

M-1

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/02_exercise/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/01_quaternion/index.html

Interpolating rotation
Do not use componentwise-interpolation on rotation matrix

 interpolate in quaternion space

Can use either:
- SLERP - Spherical Linear Interpolation

 with

Between two unit quaternions

- LERP - Linear Interpolation

When blending multiple quaternions with weights

Rem.
When interpolating b/w rotations and positions:

Use quaternion with rotation, componentwise-interpolation on position 8/35

⇒

q(t) = ​ q ​ +
sin(Ω)

sin((1 − t)Ω)
1 ​ q ​,

sin(Ω)
sin(tΩ)

2 cos(Ω) = q ​ ⋅1 q ​2

q ​, q ​1 2

q(t) = ​

∥ ​ α ​q ​∥∑j j j

​ α ​ q ​∑j j j

q ​j α ​j

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/01_affine_transform/04_order_of_operations/03_exercise/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/03_polar_decomposition/index.html

Handling affine transformation : Polar Decomposition
Key-pose transforms are often given as matrices.
How can we interpolate b/w affine transforms?

- Splitting linear /translation part is easy.
- Problem: interpolating the linear part

mixes rotation, scaling, shearing

 Split into: rotation part, and scaling/shearing.
- Interpolate rotation with quaternion (ex. SLERP/LERP)
- Scaling/shearing using componentwise interpolation (ex. linear).

- Polar decomposition:
- : Rotation matrix
- : Positive semi-definite matrix

[K. Shoemake and T. Duff, Matrix Animation and Polar Decomposition. Graphics Interface 92.]

- Polar decomposition is obtained from SVD

 with ,

- Or numerically, can be computed using the following
iterative scheme

 9/35

4 × 4

M
M

⇒ M

M = R D
R
D

SVD(M) = WΣV T R = WVT D = VΣVT

R

R ​ =0 M , R ​ =i+1 0.5 (R ​ +i (R ​))i
−1 T

http://research.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/01_quaternion/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/04_final_algorithm/index.html

Handling affine transformation
Algorithm to interpolate between two general matrices

1. Extract translation from .

2. Compute , (rotation matrices), and , (scaling/shearing matrices) from

3. Interpolate linearly position and scaling/shearing ,

4. Compute quaternions , from ,

Note with ,

5. Compute SLERP

6. Convert back to matrix

7. Compute final matrix with translation .

 10/35

4 × 4 M ​,M ​1 2

p ​, p ​1 2 M ​,M ​1 2

R ​1 R ​2 3 × 3 D ​1 D ​2 3 × 3 M ​,M ​1 2

p(t) = (1 − t) p ​ +1 t p ​2 D(t) = (1 − t)D ​ +1 tD ​2

q ​1 q ​2 R ​1 R ​2

M → q q = ​ , ​ , ​ , ​(2r
M ​−M ​zy yz

2r
M ​−M ​xz zx

2r
M ​−M ​yx xy

2
r) r = ​1 + M ​ + M ​ + M ​xx yy zz

q(t) = (q ​, q ​, t)1 2

q(t) → R(t)

M(t) = R(t)D(t) p(t)

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/03_polar_decomposition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/01_opengl/index.html

Camera and OpenGL
In OpenGL: no real notion of "camera"

Unique viewpoint - cube - Normalized Device Coordinate
Left-right/x, Bottom-up/y, Front-back/z (toward negative z)
No perspective (displays (x,y) for the smallest z)

Any camera effect (position, orientation, perspective)
must be coded "manually" in the shader.
All these effects can be represented as matrices.

Three common matrices
Model matrix

Affine transform - specific to a shape.
Local object coordinates to world space.

View matrix
Rigid transform - position/orientation of the camera in the scene.
World space to camera/view/eye space

Projection matrix
Perspective matrix - map frustum to normalized cube. (/or ortho projection)
Camera space to Normalized Device Coordinate (clip/screen space) 11/35

(x, y, z) ∈ [−1, 1]3

p = Projection × ​ ×
ModelV iew

​V iew × Model p ​0

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/03_interpolation/02_affine/04_final_algorithm/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02_camera_representation/index.html

View representation as matrix
Camera parameterized by:

A center ; right, up, front unit vectors
expressed in global coordinates

Frame matrix:
Transform unit coordinates into camera vectors

Matrix of column-oriented vectors of camera directions

Frame=

 12/35

c

Frame × (1, 0, 0, 0) = right

Frame × (0, 1, 0, 0) = up

Frame × (0, 0, 1, 0) = −front

Frame × (0, 0, 0, 1) = c

​ ​ ​ ​ ​ =

⎝
⎜
⎜⎜
⎛ ∣

right

∣
0

∣
up

∣
0

∣
−front

∣
0

∣
c

∣
1 ⎠

⎟
⎟⎟
⎞

​ ​(
O

0
c

1
)

View matrix: inverse of the Frame matrix
Transforms the camera vectors into the unit coordinates

Orientation can be read on the rows

View=

V iew × right = (1, 0, 0, 0)
V iew × up = (0, 1, 0, 0)
V iew × −front = (0, 0, 1, 0)
V iew × c = (0, 0, 0, 1)

O

​ ​ ​ ​ ​

⎝
⎜
⎜⎜
⎛ (⋯

(…
(⋯

0

right

up

−front

0

⋯)
⋯)
⋯)

0

∣
−O cT

∣
1 ⎠

⎟
⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/01_opengl/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02b_camera_question/index.html

Camera in shader - Question
Q. In a vertex shader the View matrix is passed as uniform parameter

How can you compute the position of the camera ?

A usefull function to set a point of view is the standard look_at(eye, center, up)
- eye: position of the viewer
- center: position that the viewer is looking at
- up: a direction representing the "vertical direction" of the viewer.

Q. How to compute the View matrix from the look_at parameters ?

 13/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02_camera_representation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/01_spherical/index.html

Interacting with camera
Camera orientation has 3 degrees of freedom (+ 3 dof in position)
How to handle a camera orientation using a mouse (2-dof) ?

Assuming a freely oriented camera

Common approaches

"Spherical camera"/coordinates
(+) Good to easily "turn around" oriented structure
(-) Lacks a dof: No "twist": position on the unit sphere force the angle

Not adapted to turn around non-oriented/badly-oriented objects.

Spherical coordinates + twist (ex. roll, pitch, yawn)
(+) Precise and complete control
(-) Require an additional key/controler to the mouse to control the 3 dof

 14/35

(θ,ϕ)

Example of "Spherical camera"
Correct orientation

Bad orientation of the shape
spherical camera is "stuck" in this
orientation

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/02b_camera_question/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/02_trackball/index.html

Interacting with camera - ArcBall/Trackball metaphore
Other approach: ArcBall/Trackball behavior

3 dof: left/right, top/down, but also twist

Idea: Use the 2D cursor position as "3D point on the trackball"
Motion between 2 cursor positions = 3D Rotation applied to the ball
[K. Shoemake. A User Interface for Specifying Three-Dimensional Orientation Using a Mouse. Graphics Interface, 1992.]

Algorithm:
Inputs , in screen coord.

 = ArcBallProjection
= rotation between vectors

ArcBallProjection(p)
norm(p)

if(d<)

else // hyperbola

return q
Note: the hyperbola smoothly extends the sphere in the entire screen. 15/35

p ​ =1 (p ​,p ​)1x 1y p ​ =2 (p ​,p ​)2x 2y

q ​1/2 (p ​)1/2

R (q ​, q ​)1 2

d =
1/ ​2

q = (p, ​)1 − d2

q = (p, 1/(2d))

https://graphicsinterface.org/wp-content/uploads/gi1992-18.pdf
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/01_spherical/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/03_trackball_results/index.html

Interacting with camera - ArcBall/Trackball metaphore
Natural way to rotate around a shape

(+) No privilegiated axis
No reference configuration, works in incrementing rotations
Behavior is orientation invariant

(-) Less precise than individual dof control
Drift of twist when moving back and forth

 16/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/02_trackball/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/00_title/index.html

Rotations

 17/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/06_affine_transformation/content/04_camera/03_camera_interaction/03_trackball_results/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/01_representations/index.html

Rotations
3D rotations have 3 dof, No unique representation

Matrix

Euler Angles

3 angles:

Composition of rotation
around basic axes

Axis angle

Quaternion

 18/35

R = ​ ​ ​ ​ ​

⎝

⎛ R ​xx

R ​yx

R ​zx

R ​xy

R ​yy

R ​zy

R ​xz

R ​yz

R ​zz
⎠

⎞

R R =T I
det(R) = 1

(α,β, γ) (n, θ) q = (x, y, z,w)
= n sin ​ , cos ​((2

θ) (2
θ))

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/01_definition/index.html

Rotation: Focus Euler angles
Three consecutive rotations along fixed axis along coordinates.

Can use basic rotation matrices composition

Multiple Euler angles conventions
- Proper Euler : z-x-z', x-y-x', y-z-y', ...
- Trait-Bryan : x-y-z, z-y-x, x-z-y, ...
Take care when exporting/importing/parsing between Softwares

Pro
- Combination of rotation around known axis
- Comprehensive parameters (3 dof)
- Animators can interact with angular curves
- Widely used in robotics

 19/35

(x, y, z)

R ​ =x ​ ​ ​ ​

⎝

⎛ 1
0
0

0
cos(α)

− sinα)

0
sin(α)
cos(α) ⎠

⎞
R ​ =y ​ ​ ​ ​ ​

⎝

⎛ cos(β)
0

− sin(β)

0
1
0

sin(β)
0

cos(β) ⎠

⎞
R ​ =z ​ ​ ​ ​ ​

⎝

⎛ cos(γ)
− sin(γ)

0

sin(γ)
cos(γ)

0

0
0
1 ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/01_representations/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/02_euler_angle_limitation/index.html

Rotation: Focus Euler angles
Limitations of Euler Angle

- Gimbal Lock when composing b/w some rotations
Loose one degree of freedom in specific configuration

ex.

=

=

Expect 2-dof, but get 1-dof

- Interpolation of 3 angles possible but not necessarily with
the simplest trajectory.

 20/35

R ​(α)R ​(π/2)R ​(γ) =x y z ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

⎝

⎛ 1
0
0

0
cos(α)
sin(α)

0
− sin(α)
cos(α) ⎠

⎞

⎝

⎛ 0
0

−1

0
1
0

1
0
0 ⎠

⎞

⎝

⎛ cos(γ)
sin(γ)

0

− sin(γ)
cos(γ)

0

0
0
1 ⎠

⎞

​ ​ ​ ​

⎝

⎛ 0
sin(α) cos(γ) + cos(α) sin(γ)

− cos(α) cos(γ) + sin(α) sin(γ)

0
− sin(α) sin(γ) + cos(α) cos(γ)
cos(α) sin(γ) + sin(α) cos(γ)

1
0
0 ⎠

⎞

​ ​ ​ ​

⎝

⎛ 0
sin(α + γ)

− cos(α + γ)

0
cos(α + γ)
sin(α + γ)

1
0
0 ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/01_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/02_axis_angle/index.html

Rotation: Focus Axis Angle
Any 3D rotation can be represented by

- A unit axis
- An angle

Pro.

- Concise representation: 3 DOF
- Meaningfull parameters
- Describes well the rotation between two vectors

Ex. Rotation between and

- Axis of rotation

- Angle of rotation

- Twist around can be arbitrarily chosen

 21/35

n

θ

u ​1 u ​2

n = (u ​ ×1 u ​)/∥u ​ ×2 1 u ​∥2

θ = acos(u ​ ⋅1 u ​)2

u ​2

u1

u2

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/02_euler_angle/02_euler_angle_limitation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/03_rodrigues_formula/index.html

Rotation: Focus Axis Angle - Rodrigues
Applying a rotation to a vector

Rodrigues' rotation Formula

 22/35

(n, θ) v

v = v ​ +∥ v ​⊥

v =′ v ​ +∥
′ v ​⊥

′

⇒ v =′ v ​ +∥ (cos(θ) v ​ +⊥ sin(θ)n × v ​)⊥

v ​ =∥ (v ⋅ n)n
v ​ =⊥ v − (v ⋅ n)n

v =′ (v ⋅ n)n + cos(θ)(v − (v ⋅ n)n) + sin(θ)n × (v − (v ⋅ n)n)

⇒ v =′ cos(θ) v + sin(θ)n × v + (1 − cos(θ)) (v ⋅ n)n

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/02_axis_angle/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/04_rodrigues_to_matrix/index.html

Rotation: Focus Axis Angle as Matrix

 23/35

v =′ cos(θ) v + sin(θ)n × v + (1 − cos(θ)) (v ⋅ n)n = R(n, θ) v

v =′ cos(θ)v + sin(θ) ​ ​ ​ ×
⎝

⎛ n ​x

n ​y

n ​z
⎠

⎞
v + (1 − cos(θ)) (​ ​ ​) v ​ ​ ​n ​x n ​y n ​z

⎝

⎛ n ​x

n ​y

n ​z
⎠

⎞

v =′ cos(θ) v + sin(θ) ​ v +

K

​​ ​ ​ ​ ​

⎝

⎛ 0
n ​z

−n ​y

−n ​z

0
n ​x

n ​y

−n ​x

0 ⎠

⎞
(1 − cos(θ)) ​ v

K2

​​ ​ ​ ​

⎝

⎛ n ​x
2

n ​ n ​x y

n ​ nx z

n ​ n ​x y

n ​y
2

n ​ n ​y z

n ​ n ​x z

n ​ n ​y z

n ​z
2 ⎠

⎞

v =′
​ ​ ​ ​ ​ v

⎝
⎜
⎜
⎜
⎜⎜
⎛ cos(θ) + n ​(1 − cos(θ))x

2

n ​n ​(1 − cos(θ)) + n ​ sin(θ)x y z

n ​n ​(1 − cos(θ)) − n ​ sin(θ)x z y

n ​n ​(1 − cos(θ)) − n ​ sin(θ)x y z

cos(θ) + n ​(1 − cos(θ))y
2

n ​n ​(1 − cos(θ)) + n ​ sin(θ)y z x

n ​n ​(1 − cos(θ)) + n ​ sin(θ)x z y

n ​n ​(1 − cos(θ)) − n ​ sin(θ)y z x

cos(θ) + n ​(1 − cos(θ))z
2 ⎠

⎟
⎟
⎟
⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/03_rodrigues_formula/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/05_matrix_axis_angle/index.html

Rotation: Focus Axis Angle - Summary
Given a rotation - Corresponding rotation matrix

Pro
- Concise and general representation
- Expressive parameters in 3D space (axe, angles)
- Efficient rotation and correspondance with matrix

Cons
- No simple composition expression between two rotations.
- No direct interpolation

(well handled by quaternion representation) 24/35

(n, θ)

R(n, θ) = I + sin(θ) K + (1 − cos(θ)) K2

R(n, θ) =

​ ​ ​ ​

⎝
⎜
⎜
⎜
⎜⎜
⎛ cos(θ) + n ​(1 − cos(θ))x

2

n ​n ​(1 − cos(θ)) + n ​ sin(θ)x y z

n ​n ​(1 − cos(θ)) − n ​ sin(θ)x z y

n ​n ​(1 − cos(θ)) − n ​ sin(θ)x y z

cos(θ) + n ​(1 − cos(θ))y
2

n ​n ​(1 − cos(θ)) + n ​ sin(θ)y z x

n ​n ​(1 − cos(θ)) + n ​ sin(θ)x z y

n ​n ​(1 − cos(θ)) − n ​ sin(θ)y z x

cos(θ) + n ​(1 − cos(θ))z
2 ⎠

⎟
⎟
⎟
⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/04_rodrigues_to_matrix/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/04_quaternion_definition/index.html

Rotation: Focus on Quaternions
Quaternions: generalization of complex numbers.

 real part, imaginary (or pure quaternion) part.

We write in short
(don't confound with 4D vectors in homogeneous coordinates)

Properties of imaginary basis vectors

- Provides the algebraic properties
 25/35

q = x i+ y j+ z k+ w w (x, y, z)

q = (x, y, z,w)

i =2 j =2 k =2 −1
ij = −ji = k
jk = −kj = i
ki = −ik = j
ijk = −1

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/03_axis_angle/05_matrix_axis_angle/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/05_quaternion_basic_operations/index.html

Basics operations on quaternions
- Conjugated quaternion

- Quaternion norm . Unit quaternion satisfies .

- Quaternion product

Sometimes interesting to separate real part from pure quaternion part .
- Shorthand vector form
- Quaternion product in vector form

 26/35

q =⋆ (−x, −y, −z,w)

∥q∥ = ​ =q q⋆
​x + y + z + w2 2 2 2 ∥q∥ = 1

q ​ q ​ =1 2 (x ​ i +1 y ​ j +1 z ​ k +1 w ​) (x ​ i +1 2 y ​ j +2 z ​ k +2 w ​) =2 ...

q ​ q ​ =1 2 ​ ​ ​

⎝
⎜
⎜⎜
⎛ x ​w ​ + w ​x ​ + y ​z ​ − z ​y ​1 2 1 2 1 2 1 2

y ​w ​ + w ​y ​ + z ​x ​ − x ​z ​1 2 1 2 1 2 1 2

z ​w ​ + w ​z ​ + x ​y ​ − y ​x ​1 2 1 2 1 2 1 2

w ​w ​ − x ​x ​ − y ​y ​ − z ​z ​1 2 1 2 1 2 1 2
⎠
⎟
⎟⎟
⎞

w s = (x, y, z)
q = (s,w)

q ​ q ​ =1 2 (s ​ w ​ +1 2 s ​ w ​ +2 1 s ​ ×1 s ​ , w ​ w ​ −2 1 2 s ​ ⋅1 s ​)2

Note: Quaternion product is
- associative:
- non-commutative:

(q ​q ​)q ​ =1 2 3 q ​(q ​q ​) =1 2 3 q ​ q ​ q ​1 2 3

q ​ q ​ =1 2  q ​ q2 1

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/04_quaternion_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/06_quaternion_rotation/index.html

Relation between quaternion and rotation
Consider

- a quaternion of unit norm .
- a vector assimilated to the pure quaternion .

Then
- is a pure quaternion
- And is the rotation of vector around the axis , with angle .

Demonstration

As , we can write , where

Then

 Rodrigues formula for axis and angle .

The unit quaternion represents the rotation of angle around the axis .

 27/35

q = (s,w) ∥q∥ = 1
v = (v ​, v ​, v ​)x y z q ​ =v (v, 0) = (v ​, v ​, v ​, 0)x y z

q ​ =v′ R ​(v) =q q q ​ qv
⋆ q ​ =v′ (v ​, v ​, v ​, 0)x

′
y
′

z
′

v =′ (v ​, v ​, v ​)x
′

y
′

z
′ v n = s/∥s∥ 2 acos(w)

R ​(v) =q (s,w) (v, 0) (−s,w) = ... = ((w −2 s) v +2 2(s ⋅ v) s + 2w (s × v), 0)

∥q∥ = 1 q = (s,w) = (n sin(ϕ), cos(ϕ)) ∥n∥ = 1

R ​(v) =q (v +

cos(2ϕ)

(cos (ϕ) − sin (ϕ))2 2
​(n ⋅

1−cos(2ϕ)

​2 sin (ϕ)2 v)n + ​ n ×

sin(2ϕ)

​2 cos(ϕ) sin(ϕ) v , 0)

⇒ n 2ϕ

q = (n sin(θ/2), cos(θ/2)) θ n

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/05_quaternion_basic_operations/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/07_quaternion_composition/index.html

Composition of rotations
Consider two rotation associated to their unit quaternions .

The product represents the composition .

Demonstration

We show that .

, as

 28/35

(R ​,R ​)1 2 (q ​, q ​)1 2

q ​ q ​1 2 R ​ ∘1 R ​2

R ​(v) =q ​ q ​1 2 R ​ ∘q ​1 R ​(v)q ​2

R ​(v) =q ​ q ​1 2 (q ​q ​) v (q ​q ​)1 2 1 2
⋆

R ​(v) =q ​ q ​1 2 (q ​ q ​) v (q ​ q ​)1 2 2
⋆

1
⋆ (q ​q ​) =1 2

⋆ q ​ q ​2
⋆

1
⋆

R ​(v) =q ​ q ​1 2 q ​ (q ​ v q ​) q ​1 2 2
⋆

1
⋆

R ​(v) =q ​ q ​1 2 q ​ R ​(v) q ​ =1 q ​2 1
⋆ R ​ ∘q ​1 R ​(v)q ​2

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/06_quaternion_rotation/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/08_quaternion_matrix/index.html

Correspondance quaternion to rotation matrix
The unit quaternion represents the rotation given by the matrix

Demonstration

 with

, with 29/35

q = (x, y, z,w)

R = ​ ​ ​ ​ ​

⎝

⎛ 1 − 2(y + z)2 2

2(xy + wz)
2(xz − wy)

2(xy − wz)
1 − 2(x + z)2 2

2(yz + wx)

2(xz + wy)
2(yz − wx)

1 − 2(x + y)2 2 ⎠

⎞

v =′ R ​(v) =q q q ​ q =v
⋆ ((w −2 s) v +2 2(s ⋅ v) s + 2w (s × v), 0) s = (x, y, z)

v =′ (w −2 x −2 y −2 z)v +2 2 ​ ​ ​ v ​ ​ ​ +(x y z) (x y z)
T

2w ​ ​ ​ ×(x y z) v

v =′
​(w − x − y − z) I + 2 ​ ​ ​ ​ ​ + 2w ​ ​ ​ ​ ​ ​ v

⎝

⎛
2 2 2 2

⎝

⎛ x2

xy

xz

xy

y2

yz

xz

yz

z2 ⎠

⎞

⎝

⎛ 0
z

−y

−z

0
x

y

−x

0 ⎠

⎞

⎠

⎞

v =′ Rv x +2 y +2 z +2 w =2 1

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/07_quaternion_composition/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/09_quaternion_wrap_up/index.html

Summary - Correspondance quaternion / matrix-
vector

Representation and Operations
3D space Quaternion space

Vector

Rotation (matrix) ,

Apply rotation to vector

Rotation composition

Rotation to Quaternion
Rotation of axis and angle

Quaternion to Rotation

Unit quaternion

 30/35

v = (v ​, v ​, v ​)x y z q ​ =v (v, 0) = (v ​, v ​, v ​, 0)x y z

R 3 × 3 q = (x, y, z,w) ∥q∥ = 1
Rv q q ​ qv

⋆

R ​ R ​1 2 q ​ q ​1 2

n θ ⇒ q = (n sin(θ/2), cos(θ/2))

q = (x, y, z,w) ⇒ R = ​ ​ ​ ​ ​

⎝

⎛ 1 − 2(y + z)2 2

2(xy + wz)
2(xz − wy)

2(xy − wz)
1 − 2(x + z)2 2

2(yz + wx)

2(xz + wy)
2(yz − wx)

1 − 2(x + y)2 2 ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/08_quaternion_matrix/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/00_title/index.html

Interpolation
Rotations

 31/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/02_rotation/04_quaternion/09_quaternion_wrap_up/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/01_introduction/index.html

Interpolating rotation
Problem: Given 2 rotations

- Find rotation st , , and varies smoothly along

Matrix representation
Componentwise interpolation not adapted

ex. is not a rotation: introduce scaling/shearing
The correct formulation to interpolate on the manifold would be

But matrix exponential is complex to compute

Euler angle
Can interpolate the 3 angles separately
(+) Leads to a rotation
(-) Doesn't necessarily follows simplest trajectory

Axis-Angle
No trivial interpolation scheme with different axes

Quaternion
Well adapted (see later)

 32/35

r ​, r ​1 2

r(t) r(0) = r ​1 r(1) = r ​2 t

t R ​ +1 (1 − t)R ​2

R1 exp(t log(R ​ R))1
T

2

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/00_title/index.html

Interpolation
Affine Transforms

 33/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/01_rotation/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/01_rigid_motion/index.html

Interpolating rigid motion
3D objects have orientation and position .

 Need to interpolate both, usually handled separately.

Given two key-positions and in-betweens computed
at time as

- Linear interpolation of positions
- Interpolate rotation with SLERP on quaternions

- Convert
- Compute
- Convert back

 34/35

r p

⇒

(p ​, r ​)1 1 (p ​, r ​)2 2

t ∈ [0, 1]
p(t) = (1 − t) p ​ +1 t p ​2

(r ​, r ​) →1 2 (q ​, q ​)1 2

q(t) = SLERP (q ​, q ​, t)1 2

q(t) → r(t)

valuevalue 0
Close ControlsClose Controls

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/02_comparison_quaternion_euler/index.html

Interpolating rigid motion - Comparison

Matrix interpolation Euler angle interpolation Quaternion interpolation

 35/35

file:///home/damien/epita_ani3D/lecture/_site/03_affine_transform/pdf/07_quaternion/content/03_interpolation/02_affine/01_rigid_motion/index.html

