Physically based simulation - Models

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/01_when_physically_based/index.html

‘When physically based simulation is needed

- Accurate dynamics
- Teadious to model by hand or procedurally
- Multiple interacting elements: ex. Multiple collisions: rigid bodies, hairs, etc.

- Complex animated geometry: Cloths, fluids

2/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/02_general_methodology/index.html

| General methodology

1. Description of the system
Describe system by some parameters (positions, speed, orientation, etc).
- State of the system is known at time ¢ = 0 - Initial value problem in time
- State of the system may be constrained in space - Boundary value problem in space

2. Evolution
Link the evolution of the system to forces or constraints using dynamic principles and conservation laws
—> Differential equation

3. Numerical Solution
Solve the differential equation using numerical iterative approaches.

Note: Fundamentally different that direct approach controling the trajectories at key-frames
- The system is set at an initial step
- We let the numerical solution build the space-time trajectory for us
(+) Allows to model complex behavior
(-) Lack of control on the result

3/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/01_when_physically_based/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/01_title/index.html

1- Particles
2- Rigid bodies

Fundamental models

3- Continuum models

4/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/02_general_methodology/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/02_model/index.html

| Physically-based particle system

1. Description
Particle is fully described by: Position p, Velocity v, Mass m

Fundamental quantities: position and linear momentum P = mwv D (t) v (t)
Linear Momentum preserved in isolated system m

2. Evolution
- Fundamental principle of dynamics
Force applied on particle F'(p, v, t)

{ p'(t) = v(t)
P'(t) = m'(t) = F(p,v,t)

- Conservation of energy (ex. kinetic energy (1/2m v?)+potential energy = const, etc.)

- Lagragian, or Hamiltonian (reduced coordinates)

5/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/01_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/03_model_solution/index.html

| Physically-based particle system

3. Numerical Solution
ODE (Ordinary Differential Equation) formulated as an Initial Value Problem

ex. { i;(;,)(; i(;)’(p,v,t) , withv(0) = vg, p(0) = pg

- Discretize in time t* = kh, h = At = time step.
= Build a discrete numerical solution p* = p(tk), VP = v(tk).

- We can consider initially the following iterative scheme

{ VL = ok B F(pk, ok, %)

pk—l—l _ pk L h,vk—l—l

Simple to implement, reasonably OK for simple examples (more details later).

6/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/02_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/00_title/index.html

1- Particles
2- Rigid bodies

Fundamental models

3- Continuum models

7/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/03_model_solution/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/01_definition_rigid/index.html

R1g1d body description

- Solid defined within a domain 2 C R?
- With a density of mass p(p;) at each point p; € (2

- Total mass of the solid m

m=/ p(p;) A
p; £}

- Position of the center of mass (com) p

1
p=— o(p;) p; dQ
m p; £}

- Relative position of a position p; with respect to com
r=>p—0D

8/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/02_orientation/index.html

Position and speed of a point on the rigid body

The center of mass has, at time ¢,

- a position p(t) t— 0

- avelocity p/(t) = v(t) R(?) L
/
The body has an orientation R(¢) R (t)
pi (0
A point of the rigid body has
P g y pi(t)

pi(t) = p(t) + R(t) o
with rg = pz(O) — p(O)

- a position

aspeed [pl(t) = v(t) + R'(£) o

9/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/01_definition_rigid/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/03_angular_speed/index.html

Angular speed
Speed of p; : pi(t) = v(t) + R'(¢) ro
Introduce angular speed w € R3 such that

() = v(t) + w(t) x r(t)

W 2~ vector expressing the instantaneous rotation of T(t)

By identification R'(t) ro = w(t) x r(t)
= R'(t) rg = w(t) x (R(t) o)

Matrix expression of w = (wy, Wy, W)

= R(t) = &(t) R(t)

10/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/02_orientation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/04_kinematics/index.html

| Rigid body kinematics

Similarily to particles
- Position of the com: p(t)
- Velocity of the com: v(t) = p'(t)

P(t) = mo(t)

Linear Momentum:

(

Specific to rigid body
- Orientation of the body: R(t) € R3*?
- Angular velocity of the body: w(t) such t.

Angular Momentum:

L(t) = I(£) w(t)

with I(t): Inertia tensor

I(t) = R(t) I R" (¢)
I, = /EQ p(r) (rfriy — rrt)dQ

/Q o ;1) dﬂ))

hat @ = R/(¢) R* (¢)

Mass: resistance to change of speed (of the com)

Inertia: resistance to change of angular speed

11/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/03_angular_speed/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/05_inertia_derivation/index.html

(

Inertia tensor

Defining inertia tensor formulation from angular momentum definition

Angular momentum expressed with respect to an arbitrary point pg: T(pz-) = p; — Po

L:/rx(pr')dQ:/prx(p'+er) dQ (first part sum to 0)
Q Q

iL:/prxwxrdQ:/prx(—rxw)dﬂ
0 0

O -r, r,
:>L:(/pr“fﬁTdQ>w:Iw with 7 = T, 0 — Ty
0 —T, Tz 0
I

Changing the reference frame

= L = (/p(RfFO) (RfO)TdQ> w = R(/ p(r) 7o f{dﬂ)RTw:RIORTw
Y/ ()

—_—
Iy

12/87

J

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/04_kinematics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/06_inertia_definition/index.html

(

Inertia tensor properties

rz + frg —TxTy — 1T,
I = / p(r) —TyTy T2 TS —TyT, dQ} = / p(r) (rfrId — rr!) dQ
ref) ref)

—T.T, —TyT, ri —+ rs

- I is usually expressed at the center of mass p

- I depends on the body orientation. Given a rotation R: I = R I R?
= compute once I in a rest position, then update it using R

- There exist a frame in which [is diagonal (principle axes of inertia).

Corresponds to eigenvectors of matrix 1.

13/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/05_inertia_derivation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/07_forces/index.html

(

Dynamics: Forces and torques on a solid

- Given a local force f(p;) acting on a position p; € €2
- Contribute to 2 global components applied on the body:

- Total net force I’ applied on the shape
Induce change of linear momentum (a displacement of COM)

F = f(pi) dS2

p; €l

- Torque 7 applied on the body
Induce change of angular momentum (spin of the solid)

T:/_ Q(pz'—p) x f(pi) dQ

14/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/06_inertia_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/08_dynamics/index.html

Dynamics

Simularly to particles
Force F'is related to the change of linear momentum F'(t) = P'(t) = (mv)'(t)

Specific to rigid bodies
Torque T is related to the change of angular momentum 7(t) = L'(t) = (I w)'(t)

Equation of Motion
Fundamental principle of dynamics for rigid body

D (v
dl P | | F
d| R | | &R

L T

15/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/07_forces/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/09_practical_rigid_body_dynamics/index.html

Rigid solid dynamics in practice

1. Initial condition
- p(to), v(t()), R(to), w(to) given as initial condition
- Precompute Iy = I(tp)
- Compute L(ty) = Iy w(tp) .

2. Temporal Evolution
Iterate over time

- Compute total force F'(t;) and torque 7(t) P (t) v(t)
- Compute I(t;) = R(ti) Iy RY (1) P'(t) _ F(t)
- Compute w(ty) = I(ty) ! L(t1) R'(t) w(t) R(t)
o . . L'(t) 7(t)
- Numerical integration updating state vector
— (p(trs1), P(trs1), R(ter1), L(terr)) I(t) =R(t) LR (?)
. L(t) = I(t) w(t)
- Handle collision P(t) = mov(t)

16/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/08_dynamics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/10_quaternion/index.html

(

Side note: Use of quaternion

Relation R’(¢) = @(t) R(¢) may lead to numerical drift from rotation matrix
ex. R*"1 = (Id + h @*) R® (explicit scheme)

Using quaternion leads to more robust behavior
- Quaternion expression: ¢'(t) = % g, (¢) ¢(t), with g, (¢t) = (w(t), 0))
- Quaternion is forced to keep a unit norm
N
¢ =q"/[lg"|

17/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/09_practical_rigid_body_dynamics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/11_collisions/index.html

Collisions in rigid bodies
cv%
Collisions at position p change both linear and angular velocity
Use of impulse (sudden change of velocity) J.

J = ["F2 F(e)de

to
Impulse split into

- Forceimpulse AP = mAv =J
- Torque impulse AL = I Aw = (p — Deom) X J

Elastic collision between two solids at position p;:
J = 7 n, n:normal of the separating planes

j = (vi(pi) —v2(pi)) - n/K
K=1/mi+1/me+n-(I;'(r1 xn) X ry + I *(re X n) x 7o)

More details [D. Barff. Physically Based Modeling. SIGGRAPH Course Notes 1999]

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/10_quaternion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/12_usage/index.html
https://www.cs.cmu.edu/~baraff/sigcourse/

| Rigid bodies usage

- Standard usage for rigid bodies motions
- Limited to non-deformable shapes

- Common in VFX (explosions), and simulation games (cars, airplanes, etc).

- Standard library: Bullet physics (ex. used in Blender).

I

PHYSICS LIBRARY

19/87

https://pybullet.org/
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/11_collisions/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/01_title/index.html

1- Particles
2- Rigid bodies

Fundamental models

3- Continuum material

20/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/12_usage/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/02_representation_lagrange_euler/index.html

-

Deformation of a continuous shape

Every part of the shape can be deformed
ex. Describing elastic shapes, visco-elastic shapes, fluids, etc.

Two ways to describe the deforming object

1. Lagrange representation 2. Euler representation
Positions follow the object deformation Positions are fixed in 3D space
F(t) F(x {)

o(t) \
u(x,t)

\
S

21/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/01_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/03_lagrangian_description/index.html

(

Deformation the Lagrangian description

Deformation map ¢ : R3 — R? such that p = ¢(P)
P position in the reference undeformed shape
P position in the deformed configuration.

Deformation Gradient F’

Oy Op Y
-F(P) = a—P(P) = op € R3*3

- Characterizes the local deformation associated to ¢

Position P + d P is mapped into ¢(P 4+ dP) ~ p
0pq 0pq 0pq

X Y Z
ORI

P 9Pz 0¥
0X oY 0Z

22/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/02_representation_lagrange_euler/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/04_strain/index.html

Strain

Deformation gradient F' describe both
- Rigid transformation (rotation) - not related to material effort
- Any other deformation inducing local length change - related to material effort

Strain € is a measure of deformation ignoring rigid transformation.

Several possible measure of strain
5‘(1+u+a”d1+a”d1 V+V +a‘ d'1+ v ~dy)

: Yy ax ox

- Green strain tensor € = % (F'F T Id) Rcs ur ity v dy) ” °

(+)Ifpisarotation F = R=€ =0 Pleruyer) g QOHIGE deravgidy

(-) Non linear inp Ry]i e

. . . P (“'-} T ® O(x+dx,y) eforme
- Linearized Cauchy straine = 7 (F' + F) — Id /—\ P ody

) (a) Undeformed Displacement !
Used for small deformations body ector = l

v Posifion
vector

Up=U

-]

23/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/03_lagrangian_description/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/05_stress/index.html

Stress o,

Stress o € R>*3 describes internal forces (per area unit) induced by L J 2y
the local deformation (strain) in any direction Jrz Oyz
Constitutive Relation: Relation between stress and strain, characterize a &, AiA
type of material. s Tay| Oy Ty
] _—
For linear constitutive relation: SU/ Y
Oij = Z Ciiki €1 , C': stiffness tensor (81 coefficients)
k.l
Strain energy/elastic potential energy: U = % Z oij(€)er = % Z Ciiki €ij €kl i
1,9,k,l 1,7,k,l _/I T N

For homogeneous isotropic elastic material, constitutive relation simplifies to

o = 2u e+ Mtr(e)Id, (i, A): Lamé parameters

Related to common mechanical modulus : Young' modulus Y and Poisson's ratio v

_ Y _ Yv
P = 2(14v)> A= (14+v)(1—2v)

24/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/04_strain/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/06_evolution_equation/index.html

Evolution equation

Fundamental principle of dynamics in the entire volume {)

Change of momentum = External forces (in volume) + Traction (stress applied on exterior surface

normals)

N /Qpp"(t)dﬂ _ /QF(t)dQ "

Change of momentum Ezxternal forces

Using divergence theorem /
0

JndS:/ div(o) dS2
Q Q

Equation in volume satisfied at each position p € ()

pp'(t) = F(t) + div(o(t))

Oxx Ogzy Ogxz
Ozr Ozy Oz

/ ondS
o

N\ ——’

Traction force on the boundary

div(o) =

004 80'yw 00 1z
ox Oy 0z
00 4y Doy, 00 2y
ox Oy 0z
00 BO'yz 0o,
oz Oy 0z

25/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/05_stress/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/07_euler_formulation/index.html

FEuler formulation

In Euler formulation quantities are expressed at fixed position in 3D space.

Deformation described by velocity u(p, t) at a given 3D fixed point p = (x, y, 2) at time ¢.

- Do not require anymore a reference shape
- Usefull for heavily deforming shapes (ex. fluids, gaz).

- Change of speed during dt

du ou Ou dp; Ou

Called material derivative.

- Similarily to Lagrangian derivation:
- Strain-rate tensor € (rate of change of deformation in a neighborhood of a point)
expressed with respect to u: € = % (Vu -+ VUT)

BN

N\ ‘\\

\

?

- Stress-rate tensor o (rate of change of direction force per area in a neighborhood of a point).

26/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/06_evolution_equation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/08_euler_motion/index.html

(

Equation of motion for a fluid

- Fundamental principle of dynamics on linear momentum

- External force: weight F' = p g
- Stress decomposed into

O = Oyiscous T O pressure

Opressure — —P Id (pressure acts along normal of surface elements)
ou .
P a =pg—pu-Vu-+ div (Uviscous _pId)

ou .
— pa = pg—pu- Vu — Vp—l- div (Jviscous)

27/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/07_euler_formulation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/09_navier_stokes/index.html

(

Navier-Stokes equation

- Isotropic Newtonian fluid = Linear (scalar) relation between strain-rate € and stress-rate
Oviscous

- Oyiscous = 2L € = 4 (V’u, —+ VUT), (L constant viscosity parameter
- Incompressible fluid = div(u) = 0

Equation of motion

:»pg? =pg—pu-Vu— Vp+div (s (Vu+ Vu'))

- Noting that div(Vu!) = V div(u) = 0
-And div(Vu) = Au

-Setv = u/p
ou 1
= —=g— (u-V)u— -Vp+vAiu
5 — 9 (uV) VP
Navier-Stokes equation for incompressible Newtonian fluid.

28/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/08_euler_motion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/10_numerical_solution/index.html

Numerical solutions

Lagrangian and Euler description leads to PDE (Partial Differential Equations)
In general: no explicit solutions = approximate numerical solution N

Finite Differences (FD)
- Discretize in space on a grid Ax and time At

- Use numerical approximation of derivatives using masks in space and time

(+) Very general, simple to setup 851

+) Works well with rectangular grid (ex. Euler description) 1 2 3 & 5 6 7 X

(
(-) Difficult to handle shape boundaries
(-) Instabilities

Finite elements method (FEM)

- Discretize the shape into simple elements. Build continuous function on each element.
In CG: Elements are tetrahedron (in volume). Continuous function are barycentric coordinates (linear
interpolation functions).

- Integrate PDE over each element (weak formulation), leads to a linear system
(+) Handle boundaries (ex. Deforming solid)
(+) Guarantee on accuracy
(-) Complex to set up, and computationally heavy
(-) Requires good quality meshing

29/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/09_navier_stokes/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/00_title/index.html

Rigid spheres

30/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/10_numerical_solution/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/01_introduction/index.html

(

System modeling (8

Particles modeling the center of hard spheres.

- Spheres can collide with surrounding obstacles
- Spheres can collide with each others g my;
v
- System: N particles with position p;, velocity v;, mass m,;, modeling a sphere of radius 7;.

- Initial conditions pi(O) = pg) ”07:(0) — 'Uz(')

- Forces: Single gravity forces F; = m; g. Collisions handled by impulses.

- Temporal evolution: Fundamental principle of dynamics v;(t) = p}(%), vi(t) = ¢

- Numerical solution

,Uk—l—l — ,Uk L hg
pk—H — pk L hvk+1

31/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/01_model/index.html

Collision with a plane

Plane P: parameterized using a point a and its normal n.

{peR°cP=(p—a)-n=0}

- Sphere above plane : (p; — a) - n > 1;
- Sphere in collision: (p; — a) - n < r;

- Collision detection algorithm

for(int 1=0; i<N; ++1)
{
float detection = dot(p[il-a, n);
if (detection <= r[i])
{
// ... collision response
}
}

What should we do when a collision is detected

32/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/02_collision_plane_response/index.html

s

Collision response with plane

Suppose exact contact: (pi — a) "N =T
Collision response = Update velocity

Splitv = v, + v
v, =(v-n)n
vy =v— (v-n)n

New velocity
V" =avy — B

a € |0, 1] Restitution coefficient in // direction (friction)
B € |0, 1] Restitution coefficient in | direction (impact)

33/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/01_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03_collision_plane_no_reprojection_result/index.html

-

Result: Collision response

Applying collision response on speed only

[

34/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/02_collision_plane_response/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03b_no_reprojection_exlanation/index.html

(

Result: Collision response - issue with discrete time

We assumed contact b/w sphere and plane

But: Exact contact never happens in discrete time

- When collision is detected — already inside the wall
- Weight is still acting

i doesn't bounce
high enough

35/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03_collision_plane_no_reprojection_result/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/04_collision_plane_response_position/index.html

Collision response with plane : position

In real case (discrete time) no exact contact, but penetration (Pi — a) Ny < T
—> Need to compute collision response at contact point.

Three possibilities %
(1) Correct position in projecting on the

constaint
(+) Simple to implement { 2) k

(-) Physically incorrect position P t W | }
(2) Approximate the correct position :

(3) Go backward in time to find exact instant

of collision 3)
Continuous Collision Detection
(+) Physically correct
(-) Computationally heavy (binary search, etc.)

36/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03b_no_reprojection_exlanation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/05_reprojection_position_result/index.html

-

Result: Projecting position on plane

new

P;

=p; +dn

d---
-'--
-'--
=

o

d=r;, — (pi — a) - n; : distance of penetration

37/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/04_collision_plane_response_position/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/01_collision_sphere_question/index.html

s

Collision between spheres

Given 2 spheres (pl, V1,71, ml)) (pQ7 V9, Ta, m2).
Collision when ||p; — po|| < r1 + 79

What happen with their velocities ?
v — v7°Y, vg — vyY

38/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/05_reprojection_position_result/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/02_impulses/index.html

s

Notion of impulse

to
An impulse J is the integrated force over time J = / F(t)dt
t
— results in a sudden change of speed (/momentum) in a discrete case

For a particle with constant mass

~J=m (v(t2) - v(t1))

For an impact v — v"¥

V" =v+J/m

39/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/01_collision_sphere_question/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/03_impulse_elastic_collision/index.html

Two spheres in collision 7

Impulse orthogonal to the separating plane between the two surfaces

J=ju, u= (p1—p2)/|p1— p2|

The system with the two spheres is preserving its linear momentum
—> Respective impulses 7 are equals in magnitude, and opposed in direction

miv1 + Movy = mavP® 4+ mevl® = my (V7Y — v1) = —ma (Vi — vy) = J1 = —Jo
Assume collision of "hard spheres" = "Elastic collision"
— No loss of energy, conservation of kinetic energy of the system
: my ms
=] =2 (vo —v1) - u
mi + My

1/2myvi +1/2movs = 1/2my (v7%)% + 1/2my (v5?)?
| N

= myvi + mavs = my (vl + milu) + mo (’02 — m%u)

:>O:2j'01-u+,,31'—21—2]”02-'L1,+,,‘771'—22

. 2
= J = 1/mi+1/m; (’02 o vl) U

40/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/02_impulses/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/04_update_speed_sphere/index.html

-

Two spheres in collision

new __
Uq —

'Uz —

v +j/miu = v+ 272 ((v2 —v1) - u)
u

v — j/mau = vy — 2" ((vg — 1) - u)

Rem. If m; = my: Switch their | speeds

,U;II-’LG’UJ

Uy

v1 + ((
v2 — ((

’02—”01)"“)“ — Uy T V21
Vg — V1) - U) U = Uy + V1

Can use restitution coefficient and attenuation (a,) € |0, 1]

,U’izew

,0721610

()!1)1// -

‘5vz¢

5 V1L

(11112/7

41/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/03_impulse_elastic_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/05_summary/index.html

Summary

1. Detect collision le — p2|| < 7ri+7re

2-a. If collision (relative speed > €)

Elastic collision (/bouncing) vy /9 = @ V12 =

2-b. If static contact (relative speed < ¢€)
Friction Vijg = K V1/2, W - [O, 1]
Avouds jittering

3. Correct position (project on contact surface)

P=DP-=

d = r1 4+ ry — ||p1 — p2||: Collision depth

:d/2u

42/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/04_update_speed_sphere/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/index.html

Multiple collisions

@
Pairwise collisions = no global collision free state | 0o 0 o o
- Correcting one collision may induce new collisions. o °&
- Order of correction does matter

Reducing time-step help, Iterating over mutliple pass help |O O‘ |§ 2‘

But correct solution in all cases is complex — global approach

- Precompute contact graph
explicit shock propagation management

- Global constraint-based method
Impulse: n; - (’UZ' — ’Uj) >0
Momentum preservation: m;v; — m;v; = (

Energy preservation/dissipation
—> Linear Complementarity Program, Gauss Seidel, etc.

[Realistic Animation of Rigid Bodies. J. Hahn. SIGGRAPH 1988. |

[Collision Detection and Response for Computer Animation. M. Moore and J. Wilhelms. Computer Graphics 1988. |
[Reflections on Simultaneous Impact. B. Smith et al. SIGGRAPH 2012 |

[Guaranteed Resolution of Simultaneous Rigid Body Impact. E. Vouga. ACM SIGGRAPH 2017 |

43/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/hahn_1988.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/moore_1988.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/smith_siggraph_2012.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/vouga_siggraph_2017.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/05_summary/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/00_title/index.html

Spring structure
Numerical solution of ODE
Cloth simulation

Elastic models

44/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/01_material_category/index.html

Material model

Elasticity: Shape goes back toward its original rest position when
external forces are removed.
-Purely elastic models don't loose energy when deformed (potential <
kinetic)

Plasticity: Opposite of elasticity. Plastic material don't come back to
their original shape (/change their rest position during deformation).
- Ductile material - can allow large amount of plastic deformation
without breaking (plastic)
- Brittle - Opposite (glass, ceramics)

Viscosity: Resistance to flow (usually for fluid, ex. honey)

In reality

- Elasto-plastic materials: Allow elastic behavior for small deformation,
and plastic at larger one.
- Visco-elastic materials: Elastic properties with delay.

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/01_mass_spring/index.html

Modeling elastic shapes with particles

Spring mass systems
- Particles (position, velocity, mass): samples on shape

- Springs : link closed-by particles in the reference shape
1D curve structure 2D surface structure 3D volume structure
%

46/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/01_material_category/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/02_mass_spring_shear_bending/index.html

(

Spring structure

How to model spring connectivity ?
- Structural springs: 1-ring neighbors springs (=~ mesh edges)

(+) Limit elongation/contraction, (-) Allows shearing, and bending

S

— Add extra springs connectivity
- Shearing springs: Diagonal links

- Bending springs: 2-ring neighborhood

47/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/01_mass_spring/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/00_title/index.html

Cloth Simulation

48/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/02_mass_spring_shear_bending/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/01_spring_topology/index.html

(

Mass-spring cloth simulation

- Particles are sampled ona [N X IV grid.
- Each particle has a mass m (mgjotp, = IV 2m)
- Set structural, shearing and bending springs.

49/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02_equation/index.html

s

Forces

- On each particle: gravity + drag + spring forces

)—Pi(

t

)

Fi(p,v,t) = mig - puilt) + Ky (Ipy(8) - @) - L) L2

Q%
- V;: neighborhood of particle 2
- L?j: rest length of spring 27

, — .
Associated ODE V71, { pf(t) — vZ(t)

vi(t) — Fi(p7 v, t)/mz

Q. How can we model the effect of the wind ?

|pj(t

)—Pi(

t

)|

50/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/01_spring_topology/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02b/index.html

Note on Mass-Spring numerical solution

- Non-linear ODE

-Large K;; : good length preservation, but stiff ODE
—> divergence of explicit schemes.

- Avoid explicit Euler (divergence)

- Semi-implicit Euler/Verlet works fine for low K

Semi-implicit Euler + PBD allows simple integration + stable stiff springs F}"i =

F .
= - - a
-\._ £ -
| s . :
; 3
r e
i s
¥ F.
i

[Muller et al. PBD , Inextensible clothing in Computer Games | Zi

A SY

Wit

- RK4 more accurate (but higher complexity than Verlet)

- Implicit Euler : requires linearization, but very stable

51/87

http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf
http://matthias-mueller-fischer.ch/publications/sca2012cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02_equation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/03_collision/index.html

Collisions

- Simple approach : Handled as collision between particles and shapes
(+) Simple and efficient
(-) Collision may still appears within a triangle
—> Exaustive approach: edges + faces

52/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02b/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/04_limitations/index.html

L1

ilthIl of mass spring model and continuous

- Does mass-spring system converge toward a unique solution when sampling increase ?
= No :(

Depends on the connectivity — bad for physical accuracy

Corollary

- Mass-springs work well for grid-mesh structure (draping)

- Less for arbitrary triangular meshes

1st improvment: Change toward energy formulation for

bending springs (limits locking effect)
OF
F=—
1(‘91?
E = §KL K°, K: curvature

[Cho et al, Stable but Responsive Cloth, ACM SIGGRAPH 2002]

53/87

http://graphics.snu.ac.kr/~kjchoi/publication/cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/03_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/05_energy_and_continuous_models/index.html

Triangle as continuous elements

- Defining Bending Energy between triangles

Wa(z)= > (6 —0‘))”e ”

edges e
[E. Grinspun et al., Discrete Shells, SCA 2003]

(or expressed using forces in [R. Bridson et al., SCA 2003])

- Going toward full FEM numerical resolution
- B. Thomaszewski et al. [SCA 2006], [VRIPHYS 2008], [EG 2009].

54/87

http://www.cs.columbia.edu/cg/pdfs/10_ds.pdf
https://www.cs.ubc.ca/~rbridson/docs/cloth2003.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/Subdiv_SCA06.electronic.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/seams-vriphys08.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/Thomaszewski09CSL.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/04_limitations/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/06_full_cloth/index.html

| Clothing

- Stich 2D patterns together to generate full cloth
- Cloths are developable material (preserve length w/r
their 2D patterns)

Overview
Cloth Pattern

p

f_"'

b 114

[Thalman et al. 2002]

»Body “_Body

Cloth Simulation

Simulation Window

[Umetani et al., 2011]

55/87

http://www.cs.columbia.edu/cg/SC/
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/05_energy_and_continuous_models/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/07_self_collision/index.html

Detecting self collision

Handled as moving point in collision with moving triangle
Inputs

-Triangle P (t)P2(t) Ps(t) , a point P(t)
- Each position Py(t) = Py(0) + tvp,

Computing intersection

Necessary condition
-Find t; € |0, h| such that P(¢;) is in triangle plane

n(t;): normal of the triangle at time t;

Sufficient condition
- Check P(t;) is inside the triangle

P(t;) = aPy(t;) + BPy(t:) + Y Ps(t:)
(aaﬁafy) < [071]3,O{—|—5—|—7 — 1

[X. Provot. Collision and self-collision handling in cloth model dedicated to design garments. Graphics Interface 1997. |
[R. Bridson et al. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM SIGGRAPH 2002 |

56/87

https://graphics.stanford.edu/courses/cs468-02-winter/Papers/Collisions_vetements.pdf
https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/06_full_cloth/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/01_introduction/index.html

Animating fluids (I)

Stable Fluid

57/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/07_self_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_solving_in_grid/index.html

s

Solving Navier-Stokes on grid

"Brute force" approach
- Rectangular grid filled with fluid
- Use finite differences on the grid for Navier-Stokes equation

ou 1
" ——;Vp—kf—(u-V)u—l—l/Au
div(u) = 0

(-) Stability conditions
(-) Loose advection details on the grid

At

.-"'.
- ﬂ
e
> T

e T

[Modeling the Motion of a Hot, Turbulent Gas. N
Foster and D. Metaxas. SIGGRAPH 1997 |

58/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/index.html
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring07/papers/fosterGas.pdf

| Stable Fluids - Idea

Well known improvement: Jos Stam, Stable Fluids, ACM SIGGRAPH 1999

1
@: —(u-V)u+vAu— —Vp
ot 0

-1/p Vp: Pressure term only used to ensure divergence free
- Similar to Lagrange multipler for constraints

1st Idea

Remove pressure term

Replace by explicit projection on divergence free vector field P
Ou

= o0 =P(f — (u- V)u+rvAu)

[Stable Fluids. J. Stam. SIGGRAPH 1999 |
7nd Idea [Real Time Fluid Dynamics for Games. J.
Stam. Game Dev. Conf. 2003 |

Compute each terms one after the other

TN u’f%u’ﬁ%ulgéukﬂ

~ N T O
addforces dif fuse project advect

f vA\u p (u-V)u

59/87

https://05f43270-a325-4aeb-a1d8-39e42f0e9fcc.filesusr.com/ugd/cf1fd6_898fe9b63df946689101b8d074f8efba.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_solving_in_grid/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01b_vector_scalar/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/assets/stable_fluids.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/assets/real_time_fluid.pdf

| Stable Fluids - General Algorithm

t=t+h

Velocity l 1 Solve 2. Enforce 3 Advect u u(t+h)

u(t) > diffusion > divergence > along itself >

-~

= SiEE
7
///////// P I I R R N I T NN N NAAVY YL ::'\\‘\\k
=% e NN AN
i e N n,‘/ 7 W

!)
111 1 tres
~ IRy NN\ Frres
giz77772 - Zzz oo m\\“// W A ‘;‘:\/\/ 150
Pl IR ’I/I/// Y IV rP 'V /////
e YY) = ’99/ i
P ! ’/——.—_- 1 (e
28 s ="

/ //‘/——-—_,._.. -

Scalar field
f(t) l L. Solve u(t) > | 3 Advect f | f(t+h)
P | diffusion > along u
(optionnal)

60/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/02_computing_diffusion/index.html

1 - Diffusion
of

Use finite differenceon ——~ =v Af

ot
Notation: f , = f(k, Az, k, Ay, k; At)

Explicit schemes may oscillates/diverge for large time steps

—> Use implicit scheme for unconditional stability
flr -k, (fji%y —2fa My fah -2 e+ f,fZL)

At B (Ax)? (Ay)?
Assuming Az = Ay =1

(1 +4vA0) f51 — v AU, + 5, + F o+ 5 = £,

Use Gauss-Seidel iterative method to solve the sparse linear system

Initialize f*1 = f*
fort = 1..Nyax

feg' = traafey + ol + iy + foyh + i), a=v AL

61/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01b_vector_scalar/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/03_advection/index.html

2 - Advection

Advection = move some function along given velocity u.

- Advecting a scalar field f along u - In Navier-Stokes advect the velocity

Z(p’t)_l_u(p?t)‘vf:O itself f = u

- Can also advect density, color,
texture coordinates, etc. to visualize

- Advecting a vector field f along u
f the motion.

ot

(p,t) + (u(p,t) - V) f =0

62/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/02_computing_diffusion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/04_computing_advection/index.html

(

2 - Computing advection

Advecting generic value f along u

Idea Compute value of f at time ¢ at fixed position
grid p in moving back at t — At.

P
Value of f advected at point p at time £ was at p01. p/

position Pprey = p — Al v(p,t) attimet — At. | y ==
— f(pv t) — f(pprevat T At)

Dprev 18 Not a grid point coordinates: Use interpolation
Can use Bilinear interpolation

f(pprev) — (1 —Oé) (1 _6) Poo (1 —04)52?01 —I—Oé(l _6) p10+aﬂp11

63/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/03_advection/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/05_divergence_free/index.html

(

3 - Divergence Free Vector Field

Before projection: /

/////////////

....................
..................

lllllllllllllllllll

After projection: R

.......

...................
..................

64/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/04_computing_advection/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/06_projection_computation/index.html

-

3 - Projection to divergence free vector field

Consider a general vector field w

Helmoltz decomposition: w = u + v
- u: Divergence free vector field such that div(u) = 0
- v: Gradient field v = Vq, ¢ scalar field.

q satisfies a Poisson equation

div(w) = div(u) + div(v) = div(w) = div(Vq)
=0 A\q

Method- Given an input field w
1. Compute q as solution of Aq = div(w)
2. Compute u = w — Vq

65/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/05_divergence_free/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/07_projection_algorithm/index.html

3 - Projection to divergence free vector field (Algo)

Input vector field w = (w?®, wY)
Note: we assume in the following Ax = Ay =1

1- Compute d = div(w)
Ay = (w£+1,y — W1, wi,yﬂ — wi,y_l)/ 2

2 - Compute q in solving Aq = b

(Q:B+1,y =+ Qr—1,y — 2 Q:I:,y) =+ (Q:I:,erl + Qr,y—1 — 2 Qa:,y) — dac,y
:> 4q$,y — qw+]—7y —I_ qx_:l)y —I_ QCC,y—l—]. —I_ qxay_l o dib,y

ex. Numerical iterations using Gauss Seidel

Initialize ¢ = 0
For ¢ = [1..Nyax]
qmay — 1/4 (qw+]-7y qw—lay qw7y+]- qway_l o dway)

3-Computeu = w — Vq
Ug,y = Wg,y — (qcv+1,y — Qz-1,y5 Qzy+1 — qiv,y—l) /2

66/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/06_projection_computation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/08_boundaries/index.html

(

Handling boundaries

Boundariesz = 0,z = N, — 1,y = 0,y = N,

need special care

- For density
Assume value C° continuity on the boundary

Row/Column fac,O — fa;,l; fO,y — fl,y etc.

- For velocity: f = (f%, fY)
Assume reflexion on walls

Row: fro = (f? 215 fy)
Column: fy, = (— fl,y’ fl,y)

- In all cases: Average value for corners

foo = (fi0+ fo1)/2, etc.

Copy/Reflexion
¥, N
J /
Average

‘---
1

67/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/07_projection_algorithm/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/09_example/index.html

‘Stable fluids example

Amanda Ghassaei 68/87

https://github.com/amandaghassaei/FluidSimulation
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/08_boundaries/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/01_introduction/index.html

Animating fluids (II)

- Procedural
- Level Set

_ PIC/FLIP

- SPH

69/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/09_example/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/01_model/index.html

Procedural models for free surtface water

Often based on Shallow water equation

neglect depth velocity component

[A. Fournier, W. T. Reeves. A simple Model of Ocean Waves, ACM SIGGRAPH 1986 |
[D. Hinsiger et al. Interactive Animation of Ocean Waves. SCA 2002 |

[Jerry Tessendorf, Simulating Ocean Water, ACM SIGGRAPH Course Notes 2004 |

ex. Trochoid/Gerstner models
Particles following circular trajectories, waves propagates
X —xo =), a;ki/| ki| sin(k; - xo —wit + ¢)
z—2yp =) .a;cosk; x9g —w;t+ ¢)
w? = g k; - dispersion

Used for procedural ocean modeling ;

(+) Simple and scalable

(-) Interaction with other objects

70/87

https://dl.acm.org/citation.cfm?id=15894
https://hal.inria.fr/inria-00537490/document
https://people.cs.clemson.edu/~jtessen/reports/papers_files/coursenotes2004.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/02_example/index.html

Free surface water - Example

Link Three.js

https://threejs.org/examples/#webgl_shaders_ocean2
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/01_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/01_introduction/index.html

[.evel Set methods introduction

Eulerian models (ex. stable fluids) do not handle natively free boundaries such as fluid/air.
Idea: Track surface boundary using implicit surfaces

- Encode fluid volume by {2 = {p € R?’, @(p) = 0}, ¢ stored within a 3D grid.
- Solve Navier-Stokes equation within {

- Deform fluid volume using implicit surface deformation e +u-Vp=20

ot

Introduced by Ronald Fedkiw, Nick Foster, Stanley Osher (ex. [Practical Animation of Liquids, ACM SIGGRAPH 2001])

72/87

http://physbam.stanford.edu/~fedkiw/papers/stanford2001-02.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/02_example/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/02_particle_level_sets/index.html

Particles Level Set

Limitation of level sets: smoothing and loss of volume from grid interpolation
—> Use of Particle Level Set Method

[D. Enright et al. Hybrid Particle Level Set Method for Improved Interface Capturing. J. Comp. Physics 2001 |
[D. Enright et al. Animation and Rendering of Complex Water Surfaces, ACM SIGGRAPH 2002 |

@ Q@

R . x . , D. Enright et al.

73/87

http://physbam.stanford.edu/~fedkiw/papers/stanford2001-04.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/01_pic_flip/index.html

PIC/FLIP (Material Point Method)

Mix between particles and grid based approach.
- Particles: good for advection

- Grid: forces, pressure, viscosity o | o,
o/' <€
ol o7 o\.
. . . O/V O\A
u,: velocity on particle i o !
U, velocity on grid o, o

- PIC approach - Transfert velocity from grid to particles

witt = interp(ul T, phtt)
- FLIP approach - Add velocity difference from grid to particles.
u’;H — v]’; + (interp(u’gfﬂ, ptl) — interp(ulg, ™))

- PIC/FLIP : blending b/w two approaches

[Y. Zhu and R. Bridson, Animating Sand as a Fluid, ACM SIGGRAPH 2005 |

74/87

https://www.cs.ubc.ca/~rbridson/docs/zhu-siggraph05-sandfluid.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/02_particle_level_sets/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_mac/index.html

MAC grid

MAC = Marker And Cell
Staggered grid b/w scalar and velocity
Widely used grid storage to handle velocity and scalar values.

- Store scalar (pressure, density), in the center of the cell
- Store velocity components (u”, u¥) on the cell edges
Improves accuracy and stability

Q

Q

O Oy Q O
us .4
17’7]—'_5

Zr

ui—gaj pi,j uf_l_l .

O O O Q— °0O

1 o1 5
ij— =

O o) 0] O

Q

@

75/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/01_pic_flip/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_method/index.html

PIC/FLIP Method

- Transfert particle velocity to the MAC grid (Store velocity u” on grid)

- Evolve velocity on grid (pressure, forces, viscosity) excepted advection to Taan

k+1 k

- Add velocity difference Au = u — U~ to particles using interpolation (FLIP approach)

- Blend particle velocity with interpolated grid velocity (PIC/FLIP)
- Advect particles along their new velocity

_—

e oy S g -V PPttt A Wl S Sty W SN o i s

[F. Ferstl et al., EUROGRAPHICS 2016]

76/87

http://www.in.tum.de/fileadmin/w00bws/cg/Research/Publications/2016/NBFlip/nbflip.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_mac/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01_introduction/index.html

Animating fluids
SPH

77/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_method/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/index.html

SPH - Smoothed Particle Hydrodynamics

Pure Lagrangian approach.

- Sample the fluid volume with particles
- Build a continuous field from local averaging around samples

Use some local weighting kernel W
- Express derivatives/Navier-Stokes on the continuous field

Advantages
(+) Particle based - can interact with other models

(+) Scalable ®
./ - AR N ®
o/’ e o & o
I D }v\
® o %0 !l o
\ ! ®
@ \\ ’ @ ,./
e o ° . . -y - .
Initial proposed in Astronomy field o ©

[L. Lucy, A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977. |

78/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/assets/lucy_77.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/03_sampling/index.html

| Sampling and density

How-to build a continuous field from arbitrary sampled particles ?

Consider arbitrary continuous ﬁeld A()
Def. of convolution: A(p) = (A x J)(fﬂ d(p — q)dq

1. Consider W}, a smooth kernel with [, Wi (p)dp = 1

A(p) ~ (AxWy)(p) = [, Alg) Wi(p — q) dg
Low pass filter applied to A

2. Discrete sampling on p;
A(p) = >, A(pj)Wi(p — p;)V;

V;: small volume associated to p;

79/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/04_navier_stokes/index.html

-
S PH fO r N aVi e r St Oke S [Desbrun and Cani, Smoothed Particles: A new paradigm for animating highly deformable

bodies, EGCAS 1996 |
[M. Muller et al., Particle-Based Fluid Simulation for Interactive Applications, SCA 2003 |

Lagrangian representatiOn 01 particle v [M. Thmsen et al., SPH Fluids in Computer Graphics, EG STAR 2014 |
dv; m;
1 (/
m;—— = M;g Vpi + m; vAv;
dt N~~~ Pi SN——
F weight S— F viscosity
FpTGSSUTG
Objective:

1. Express p;, VP;, Av; using SPH formulation
. k+1
2. Then Integrate: ex. U; = ’Uf -+ At (Fweight -+ Fpressure -+ sz’scosity) /mz

Generic SPH representation:
Arbitrary field A at position p;: A(p;) = Zj A(p;) Wr(pi —p;) V;
For a particle of total mass m; in the volume V;: p;V; = m; = A(pi) = Zj A(pj) mj/Pj Wh, (Pz‘ — pj)

()

Usually W}, are distance function : | A(p;) = Z A(p;)m;/p; Wi(l|pi — p;l|)
J

80/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/03_sampling/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/05_density/index.html
https://hal.inria.fr/inria-00537534/document
http://matthias-mueller-fischer.ch/publications/sca03.pdf
https://cg.informatik.uni-freiburg.de/publications/2014_EG_SPH_STAR.pdf

Density

p;: Replace A(p) as p

P.
Q@
p(pi) = 2_; p(p;) mj/p; Wh(l|pi — p;l|)
, ‘ P .Pi
= ,Oi:zijh(HPi—PjH) . ®
j 0

Choice of weight functions
Use a smooth polynomial:

ex. WHO(d) = 255, (W2 —d?)?® 0<d<h

81/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/04_navier_stokes/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/06_pressure/index.html

Pressure

Fpressure — 0; sz

1. Use symetric gradient b/w (i,j) Fpressure — —% V(pi + pj)/Z
Fpressure — _% Zj m; Pz2‘|/'0§)y VWh(sz ij)

2. Express the pressure as a function of the density p
Simple approximation: p; = S (pz- — po)
- 8: Stiffness property
- po: Rest density of the fluid

3. Weight function
Pressure is used to avoid particles to group together
Avoid local maxima => non smooth "spiky" function at
WPH(d) = 15 (h —d)* 0<d<h

k i—Di :
VWP (pi — ;) = =2 (h = llpi —) 1oy 0 < |[lps —ps|| <P

82/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/05_density/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/07_viscosity/index.html

Viscosity
sz’scosz’ty — my v Avi

1. Use symetric laplacian b/w (i,j)

Ficco sity = T V A(Vj — Vi) - viscosity depends on velocity differences

Fviscosity — ;v Zj m; (Vjp_jVi) AVVh(Hp’l — Dj H)

2. Weight function
Second derivative should remain positive
Can use the spiky kernel
W (d) = sl (h—d)” 0<d<h
AWPH(d) = 45 (h—d) 0<d<h

Increasing viscosity V

83/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/06_pressure/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/08_summary/index.html

SPH Summary

Set initial conditions v;

Compute values
: [
- Density: p; = Zj m; W;fo y6(sz’ — ij)
- Pressure:p; = S8 (pi — ,00)

Compute forces
- Fweight =ms g |
- Fressure = =0 307" my B2 VWP (|| py — py)
- Fiscosity = ™y V Z;#Z m; Vi) AVV;?m.ky(sz‘ — Pj H)

Pj

. - . o k+l Lk
Time integration: U; — U; + At (Fwez’ght + Fpressu're -+ Fviscosity) /mz

84/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/07_viscosity/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/09_examples/index.html

SPH examples

Muller 2003

M. Teschner 2012 - 20M particles

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/08_summary/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/10_acceleration_structure/index.html
http://matthias-mueller-fischer.ch/publications/sca03.pdf
https://graphics.ethz.ch/~sobarbar/papers/Sol12/Sol12.pdf

Acceleration structure

SPH based on pair-wise interation = spatial sorting acceleration structure

- Uniform grid: simple and efficient.
- Verlet lists (wider neighborhood, updated every n steps only)
- List of vertices per cell, hash table for cell storage

- Spatial sorting for cache efficiency

® o ° ¢« © Edge length
equals kernel
= P o e © support
®
Actuﬁ ® o g@temial
neighbors ¢ . neighbors
° . o] @

M. Teschner

86/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/09_examples/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/11_sph_extensions/index.html

SPH extensions

(+) Very versatile (interaction between any deforming shapes)
Not only fluids

(-) Not well understood accuracy

(-) Compressible

[Solenthaler et al., Predictive-Corrective Incompressible SPH, ACM
SIGGRAPH 2009] Bruno Levy
[Ihmsen et al, Implicit Incompressible SPH, IEEE TVCG 2013 |

(-) Limited time step
[Macklin and Muller, Position based Fluids, ACM SIGGRAPH 2013]

(-) Boundaries are hard to handle
[Brand et al., Pressure Boundaries for Implicit Incompressible SPH, ACM
TOG 2018]

[Macklin and Muller 2013] , [Yu and Turk 2009]

87/87

https://graphics.ethz.ch/~sobarbar/papers/Sol09/Sol09.pdf
https://cg.informatik.uni-freiburg.de/publications/2013_TVCG_IISPH.pdf
http://mmacklin.com/pbf_sig_preprint.pdf
https://cg.informatik.uni-freiburg.de/publications/2018_TOG_pressureBoundaries.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/10_acceleration_structure/index.html
http://mmacklin.com/pbf_sig_preprint.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/11_sph_extensions/assets/yu_turk_sca2010.pdf

