
Physically based simulation - Models

 1/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/01_when_physically_based/index.html

When physically based simulation is needed
- Accurate dynamics
- Teadious to model by hand or procedurally

- Multiple interacting elements: ex. Multiple collisions: rigid bodies, hairs, etc.
- Complex animated geometry: Cloths, fluids

 2/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/02_general_methodology/index.html

General methodology
1. Description of the system

Describe system by some parameters (positions, speed, orientation, etc).
- State of the system is known at time - Initial value problem in time
- State of the system may be constrained in space - Boundary value problem in space

2. Evolution
Link the evolution of the system to forces or constraints using dynamic principles and conservation laws

 Differential equation

3. Numerical Solution
Solve the differential equation using numerical iterative approaches.

Note: Fundamentally different that direct approach controling the trajectories at key-frames
- The system is set at an initial step
- We let the numerical solution build the space-time trajectory for us
(+) Allows to model complex behavior
(-) Lack of control on the result

 3/87

t = 0

⇒

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/01_when_physically_based/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/01_title/index.html

Fundamental models
1- Particles
2- Rigid bodies
3- Continuum models

 4/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/01_introduction/02_general_methodology/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/02_model/index.html

Physically-based particle system
1. Description

Particle is fully described by: Position , Velocity , Mass
Fundamental quantities: position and linear momentum
Linear Momentum preserved in isolated system

2. Evolution
- Fundamental principle of dynamics

Force applied on particle

- Conservation of energy (ex. kinetic energy ()+potential energy = const, etc.)

- Lagragian, or Hamiltonian (reduced coordinates)

 5/87

p v m

P = mv

F (p, v, t)

​{
p (t) = v(t)′

P (t) = mv (t) = F (p, v, t)′ ′

1/2mv2

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/01_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/03_model_solution/index.html

Physically-based particle system
3. Numerical Solution

ODE (Ordinary Differential Equation) formulated as an Initial Value Problem

ex. with

- Discretize in time , time step.
 Build a discrete numerical solution .

- We can consider initially the following iterative scheme

Simple to implement, reasonably OK for simple examples (more details later).

 6/87

​ ,{
p (t) = v(t)′

mv (t) = F (p, v, t)′ v(0) = v ​, p(0) =0 p ​0

t =k k h h = Δt =
⇒ p =k p(t), v =k k v(t)k

​{
v = v + hF (p , v , t)k+1 k k k k

p = p + h vk+1 k k+1

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/02_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/00_title/index.html

Fundamental models
1- Particles
2- Rigid bodies
3- Continuum models

 7/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/02_particles/03_model_solution/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/01_definition_rigid/index.html

Rigid body description
- Solid defined within a domain
- With a density of mass at each point

- Total mass of the solid

- Position of the center of mass (com)

- Relative position of a position with respect to com

 8/87

Ω ⊂ R3

ρ(p ​)i p ​ ∈i Ω

m

m = ​ ρ(p ​) dΩ∫
p ​∈Ωi

i

p

p = ​ ​ ρ(p ​) p ​ dΩ
m

1
∫
p ​∈Ωi

i i

p ​i

r = p ​ −i p

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/02_orientation/index.html

Position and speed of a point on the rigid body
The center of mass has, at time ,

- a position
- a velocity

The body has an orientation

A point of the rigid body has

- a position

with

- a speed

 9/87

t

p(t)
p (t) =′ v(t)

R(t)

p ​(t) =i p(t) + R(t) r ​0

r ​ =0 p ​(0) −i p(0)

p ​(t) =i
′ v(t) + R (t) r ​

′
0

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/01_definition_rigid/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/03_angular_speed/index.html

Angular speed
Speed of :

Introduce angular speed such that

 vector expressing the instantaneous rotation of

By identification

Matrix expression of

 10/87

p ​i p ​(t) =i
′ v(t) + R (t) r ​

′
0

ω ∈ R3

p ​(t) =i
′ v(t) + ω(t) × r(t)

ω ≃ r(t)

R (t) r ​ =′
0 ω(t) × r(t)

⇒ R (t) r ​ =′
0 ω(t) × (R(t) r ​)0

ω = (ω ​,ω ​,ω ​)x y z

=ω̂ ​ ​ ​ ​ ​

⎝

⎛ 0
ω ​z

−ω ​y

−ω ​z

0
ω ​x

ω ​y

−ω ​x

0 ⎠

⎞

⇒ R (t) =′ (t) R(t)ω̂

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/02_orientation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/04_kinematics/index.html

Rigid body kinematics
Similarily to particles

- Position of the com:
- Velocity of the com:

Linear Momentum:

Specific to rigid body
- Orientation of the body:
- Angular velocity of the body: such that

Angular Momentum:

with : Inertia tensor

 11/87

p(t)
v(t) = p (t)′

P (t) = mv(t) = ​ ρ v ​(t) dΩ)(∫
Ω

i)

R(t) ∈ R3×3

ω(t) =ω̂ R (t) R (t)′ T

L(t) = I(t)ω(t)

I(t)
I(t) = R(t) I ​ R (t)0

T

I ​ =0 ​ ρ(r) (r r I ​ −∫
r∈Ω

T
d r r) dΩT

Mass: resistance to change of speed (of the com)
Inertia: resistance to change of angular speed

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/03_angular_speed/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/05_inertia_derivation/index.html

Inertia tensor
Defining inertia tensor formulation from angular momentum definition

Angular momentum expressed with respect to an arbitrary point :

 (first part sum to 0)

 with

Changing the reference frame

 12/87

p ​0 r(p ​) =i p ​ −i p ​0

L = ​ r ×∫
Ω

(ρ r) dΩ =′
​ ρ r ×∫

Ω
p + ω × r dΩ(′)

⇒ L = ​ ρ r ×∫
Ω

ω × r dΩ = ​ ρ r ×∫
Ω

(−r × ω) dΩ

⇒ L = ​ ω =

I

​​ ρ dΩ(∫
Ω

r̂ r̂T) I ω =r̂ ​ ​ ​ ​ ​

⎝

⎛ 0
r ​z

−r ​y

−r ​z

0
r ​x

r ​y

−r ​x

0 ⎠

⎞

⇒ L = ​ ρ (R ​) (R ​) dΩ ω =(∫
Ω

r̂0 r̂0
T) R ​R ω =

I ​0

​​ ρ(r) ​ ​dΩ(∫
Ω

r̂0 r̂0
T) T R I ​ R ω0

T

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/04_kinematics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/06_inertia_definition/index.html

Inertia tensor properties

- is usually expressed at the center of mass

- depends on the body orientation. Given a rotation :
 compute once in a rest position, then update it using

- There exist a frame in which is diagonal (principle axes of inertia).
Corresponds to eigenvectors of matrix .

 13/87

I = ​ ρ(r) ​ ​ ​ ​ ​ dΩ =∫
r∈Ω ⎝

⎛ r ​ + r ​y
2

z
2

−r ​r ​x y

−r ​r ​x z

−r ​r ​x y

r ​ + r ​x
2

z
2

−r ​r ​y z

−r ​r ​x z

−r ​r ​y z

r ​ + r ​x
2

y
2 ⎠

⎞
​ ρ(r) (r r Id −∫

r∈Ω

T r r) dΩT

I p

I R I = R I ​ R0
T

⇒ I ​0 R

I

I

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/05_inertia_derivation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/07_forces/index.html

Dynamics: Forces and torques on a solid
- Given a local force acting on a position
- Contribute to 2 global components applied on the body:

- Total net force applied on the shape
Induce change of linear momentum (a displacement of COM)

- Torque applied on the body
Induce change of angular momentum (spin of the solid)

 14/87

f (p ​)i p ​ ∈i Ω

F

F = ​ f (p ​) dΩ∫
p ​∈Ωi

i

τ

τ = ​(p ​ −∫
p ​∈Ωi

i p) × f (p ​) dΩi

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/06_inertia_definition/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/08_dynamics/index.html

Dynamics
Similarly to particles

Force is related to the change of linear momentum

Specific to rigid bodies
Torque is related to the change of angular momentum

Equation of Motion
Fundamental principle of dynamics for rigid body

 15/87

F F (t) = P (t) =′ (mv) (t)′

τ τ(t) = L (t) =′ (I ω) (t)′

​ ​ ​ ​ =
dt
d

⎝
⎜
⎜⎜
⎛ p

P

R
L ⎠

⎟
⎟⎟
⎞

​ ​ ​

⎝
⎜
⎜⎜
⎛ v

F

Rω̂

τ ⎠
⎟
⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/07_forces/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/09_practical_rigid_body_dynamics/index.html

Rigid solid dynamics in practice
1. Initial condition

- , , , given as initial condition
- Precompute
- Compute

2. Temporal Evolution
Iterate over time

- Compute total force and torque
- Compute
- Compute

- Numerical integration updating state vector

- Handle collision

 16/87

p(t ​)0 v(t ​)0 R(t ​)0 ω(t ​)0

I ​ =0 I(t ​)0

L(t ​) =0 I ​ ω(t ​)0 0

t ​k

F (t ​)k τ(t ​)k
I(t ​) =k R(t ​) I ​ R (t ​)k 0

T
k

ω(t ​) =k I(t ​) L(t ​)k
−1

k

→ (p(t ​),P (t ​), R(t ​),L(t ​))k+1 k+1 k+1 k+1

​ ​ =

⎝
⎜
⎜⎜
⎛ p (t)′

P (t)′

R (t)′

L (t)′ ⎠
⎟
⎟⎟
⎞

​ ​ ​

⎝
⎜
⎜⎜
⎛ v(t)

F (t)
(t) R(t)ω̂

τ(t) ⎠
⎟
⎟⎟
⎞

I(t) = R(t) I ​ R (t)0
T

L(t) = I(t)ω(t)
P (t) = mv(t)

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/08_dynamics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/10_quaternion/index.html

Side note: Use of quaternion
Relation may lead to numerical drift from rotation matrix

ex. (explicit scheme)

Using quaternion leads to more robust behavior

- Quaternion expression: , with

- Quaternion is forced to keep a unit norm

ex.

 17/87

R (t) =′ (t) R(t)ω̂

R =k+1 (Id + h) Rω̂k k

q (t) =′
​ q ​(t) q(t)2

1
ω q ​(t) =ω (ω(t) , 0))

​{
q = q + ​ q ​ qk+1 k

2
1

ω
k k

q = q /∥q ∥k+1 k+1 k+1

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/09_practical_rigid_body_dynamics/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/11_collisions/index.html

Collisions in rigid bodies

Collisions at position change both linear and angular velocity
Use of impulse (sudden change of velocity) .

Impulse split into
- Force impulse
- Torque impulse

Elastic collision between two solids at position :
, : normal of the separating planes

 18/87

p

J

J = ​ F (t)dt∫
t ​0

t ​+Δt0

ΔP = mΔv = J

ΔL = I Δω = (p − p ​) ×com J

p ​i

J = j n n

j = (v ​(p ​) −1 i v ​(p ​)) ⋅2 i n/K
K = 1/m ​ +1 1/m ​ +2 n ⋅ I ​(r ​ × n) × r ​ + I ​(r ​ × n) × r ​(1

−1
1 1 2

−1
2 2)

More details [D. Barff. Physically Based Modeling. SIGGRAPH Course Notes 1999]

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/10_quaternion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/12_usage/index.html
https://www.cs.cmu.edu/~baraff/sigcourse/

Rigid bodies usage
- Standard usage for rigid bodies motions

- Limited to non-deformable shapes
- Common in VFX (explosions), and simulation games (cars, airplanes, etc).
- Standard library: Bullet physics (ex. used in Blender).

 19/87

https://pybullet.org/
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/11_collisions/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/01_title/index.html

Fundamental models
1- Particles
2- Rigid bodies
3- Continuum material

 20/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/03_rigids/12_usage/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/02_representation_lagrange_euler/index.html

Deformation of a continuous shape
Every part of the shape can be deformed

ex. Describing elastic shapes, visco-elastic shapes, fluids, etc.

Two ways to describe the deforming object

1. Lagrange representation
Positions follow the object deformation

2. Euler representation
Positions are fixed in 3D space

F(x,t)

u(x,t)

 21/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/01_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/03_lagrangian_description/index.html

Deformation the Lagrangian description
Deformation map such that

 position in the reference undeformed shape
 position in the deformed configuration.

Deformation Gradient

-

- Characterizes the local deformation associated to

Position is mapped into

-

 22/87

φ : R →3 R3 p = φ(P)
P

p

F

F (P) = ​ (P) =
∂P
∂φ

​ ∈
∂P
∂p R3×3

φ

P + dP φ(P + dP) ≃ p + ​ dP
∂P
∂φ

F (P) = ​ ​ ​ ​ ​

⎝

⎛ ​∂X
∂φ ​x

​∂X
∂φ ​y

​∂X
∂φ ​z

​∂Y
∂φ ​x

​∂Y
∂φ ​y

​∂Y
∂φ ​z

​∂Z
∂φ ​x

​∂Z
∂φ ​y

​∂Z
∂φ ​z ⎠

⎞

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/02_representation_lagrange_euler/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/04_strain/index.html

Strain
Deformation gradient describe both

- Rigid transformation (rotation) - not related to material effort
- Any other deformation inducing local length change - related to material effort

Strain is a measure of deformation ignoring rigid transformation.

Several possible measure of strain
- Green strain tensor

(+) If is a rotation
(-) Non linear in

- Linearized Cauchy strain
Used for small deformations

 23/87

F

ϵ

ϵ = ​ (F F −2
1 T Id)

φ F = R ⇒ ϵ = 0
p

ϵ = ​ (F +2
1 T F) − Id

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/03_lagrangian_description/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/05_stress/index.html

Stress
Stress describes internal forces (per area unit) induced by
the local deformation (strain) in any direction
Constitutive Relation: Relation between stress and strain, characterize a
type of material.

For linear constitutive relation:
, : stiffness tensor (81 coefficients)

Strain energy/elastic potential energy:

For homogeneous isotropic elastic material, constitutive relation simplifies to
, : Lamé parameters

Related to common mechanical modulus : Young' modulus and Poisson's ratio
,

 24/87

σ ∈ R3×3

σ ​ =ij ​ C ​ ϵ ​

k,l

∑ ijkl kl C

U = ​ ​ σ ​(ϵ)ϵ ​ =
2
1

i,j,k,l

∑ ij kl ​ ​ C ​ ϵ ​ ϵ ​

2
1

i,j,k,l

∑ ijkl ij kl

σ = 2μ ϵ + λtr(ϵ) Id (μ,λ)
Y ν

μ = ​2(1+ν)
Y λ = ​(1+ν)(1−2ν)

Y ν

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/04_strain/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/06_evolution_equation/index.html

Evolution equation
Fundamental principle of dynamics in the entire volume
Change of momentum = External forces (in volume) + Traction (stress applied on exterior surface
normals)

Using divergence theorem

Equation in volume satisfied at each position

 25/87

Ω

⇒ ​ =

Change of momentum

​​ ρ p (t) dΩ∫
Ω

′′
​ +

External forces

​​ F (t) dΩ∫
Ω

​

Traction force on the boundary

​ σ n dS∫
∂Ω

​ σ n dS =∫
∂Ω

​ div(σ) dΩ∫
Ω

p ∈ Ω

ρ p (t) =′′ F (t) + div(σ(t)) σ = ​ ​ ​ ​ ​

⎝

⎛ σ ​xx

σ ​yx

σ ​zx

σ ​xy

σ ​yy

σ ​zy

σ ​xz

σ ​yz

σ ​zz
⎠

⎞
div(σ) = ​ ​ ​

⎝
⎜⎜
⎛ ​ + ​ + ​∂x

∂σ ​xx

∂y
∂σ ​yx

∂z
∂σ ​zx

​ + ​ + ​∂x
∂σ ​xy

∂y
∂σ ​yy

∂z
∂σ ​zy

​ + ​ + ​∂x
∂σ ​xz

∂y
∂σ ​yz

∂z
∂σ ​zz ⎠

⎟⎟
⎞

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/05_stress/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/07_euler_formulation/index.html

Euler formulation
In Euler formulation quantities are expressed at fixed position in 3D space.
Deformation described by velocity at a given 3D fixed point at time .

- Do not require anymore a reference shape
- Usefull for heavily deforming shapes (ex. fluids, gaz).

- Change of speed during

Called material derivative.

- Similarily to Lagrangian derivation:
- Strain-rate tensor (rate of change of deformation in a neighborhood of a point)

expressed with respect to :
- Stress-rate tensor (rate of change of direction force per area in a neighborhood of a point).

 26/87

u(p, t) p = (x, y, z) t

dt

​ (p, t) =
dt
du

​ +
∂t
∂u

​ ​ ​ =
i

∑
∂p ​i

∂u

u ​i

​​

dt
dp ​i

​ +
∂t
∂u

(u ⋅ ∇)u

ϵ

u ϵ = ​ ∇u + ∇u2
1 (T)

σ

u(x,t)

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/06_evolution_equation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/08_euler_motion/index.html

Equation of motion for a fluid
- Fundamental principle of dynamics on linear momentum

. The term is called advection.

- External force: weight
- Stress decomposed into

 (pressure acts along normal of surface elements)

 27/87

ρ ​ =
dt
du

F + div(σ)

⇒ ρ ​ =
∂t
∂u

F + div(σ) − ρ (u ⋅ ∇)u (u ⋅ ∇)u

F = ρ g

σ = σ ​ +viscous σ ​pressure

σ ​ =pressure −p Id

ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u + div σ ​ − p Id(viscous)

⇒ ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u − ∇p + div σ ​(viscous)

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/07_euler_formulation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/09_navier_stokes/index.html

Navier-Stokes equation
- Isotropic Newtonian fluid Linear (scalar) relation between strain-rate and stress-rate

- , constant viscosity parameter
- Incompressible fluid

Equation of motion

- Noting that
- And
- Set

Navier-Stokes equation for incompressible Newtonian fluid. 28/87

⇒ ϵ

σ ​viscous

σ ​ =viscous 2μ ϵ = μ ∇u + ∇u(T) μ

⇒ div(u) = 0

⇒ ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u − ∇p + div μ ∇u + ∇u((T))

div(∇u) =T ∇ div(u) = 0
div(∇u) = △u

ν = μ/ρ

⇒ ​ =
∂t
∂u

g − (u ⋅ ∇)u − ​ ∇p +
ρ

1
ν△u

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/08_euler_motion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/10_numerical_solution/index.html

Numerical solutions
Lagrangian and Euler description leads to PDE (Partial Differential Equations)

In general: no explicit solutions approximate numerical solution

Finite Differences (FD)
- Discretize in space on a grid and time
- Use numerical approximation of derivatives using masks in space and time

(+) Very general, simple to setup
(+) Works well with rectangular grid (ex. Euler description)
(-) Difficult to handle shape boundaries
(-) Instabilities

Finite elements method (FEM)
- Discretize the shape into simple elements. Build continuous function on each element.

In CG: Elements are tetrahedron (in volume). Continuous function are barycentric coordinates (linear
interpolation functions).

- Integrate PDE over each element (weak formulation), leads to a linear system
(+) Handle boundaries (ex. Deforming solid)
(+) Guarantee on accuracy
(-) Complex to set up, and computationally heavy
(-) Requires good quality meshing 29/87

⇒

Δx Δt

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/09_navier_stokes/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/00_title/index.html

Rigid spheres

 30/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/15_simulation_models/content/04_continuum_models/10_numerical_solution/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/01_introduction/index.html

System modeling
Particles modeling the center of hard spheres.

- Spheres can collide with surrounding obstacles
- Spheres can collide with each others

- System: N particles with position , velocity , mass , modeling a sphere of radius .
- Initial conditions ,

- Forces: Single gravity forces . Collisions handled by impulses.

- Temporal evolution: Fundamental principle of dynamics ,

- Numerical solution

 31/87

p ​i v ​i m ​i r ​i

p ​(0) =i p ​i
0 v ​(0) =i v ​i

0

F ​ =i m ​ gi

v ​(t) =i p ​(t)i
′ v ​(t) =i

′ g

​{
v = v + h gk+1 k

p = p + h vk+1 k k+1

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/01_model/index.html

Collision with a plane
Plane : parameterized using a point and its normal .

- Sphere above plane :
- Sphere in collision:

- Collision detection algorithm
for(int i=0; i<N; ++i)
{
 float detection = dot(p[i]-a, n);
 if (detection <= r[i])
 {
 // ... collision response
 }
}

What should we do when a collision is detected

 32/87

P a n

{p ∈ R ∈3 P ⇒ (p − a) ⋅ n = 0}

(p ​ −i a) ⋅ n > r ​i

(p ​ −i a) ⋅ n ≤ r ​i

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/02_collision_plane_response/index.html

Collision response with plane
Suppose exact contact:
Collision response = Update velocity

Split
-
-

New velocity

 Restitution coefficient in direction (friction)
 Restitution coefficient in direction (impact)

 33/87

(p ​ −i a) ⋅ n = r ​i

v = v ​ +// v ​⊥

v ​ =⊥ (v ⋅ n)n
v ​ =// v − (v ⋅ n)n

v =new α v ​ −// β v ​⊥
α ∈ [0, 1] //
β ∈ [0, 1] ⊥

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/01_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03_collision_plane_no_reprojection_result/index.html

Result: Collision response
Applying collision response on speed only

 34/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/02_collision_plane_response/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03b_no_reprojection_exlanation/index.html

Result: Collision response - issue with discrete time
We assumed contact b/w sphere and plane
But: Exact contact never happens in discrete time

- When collision is detected already inside the wall
- Weight is still acting

 35/87

→

doesn't bounce
high enough

Dt

height

0 t

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03_collision_plane_no_reprojection_result/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/04_collision_plane_response_position/index.html

Collision response with plane : position
In real case (discrete time) no exact contact, but penetration

 Need to compute collision response at contact point.

Three possibilities
(1) Correct position in projecting on the
constaint

(+) Simple to implement
(-) Physically incorrect position

(2) Approximate the correct position
(3) Go backward in time to find exact instant
of collision

Continuous Collision Detection
(+) Physically correct
(-) Computationally heavy (binary search, etc.)

 36/87

(p ​ −i a) ⋅ n ​ <i r ​i

⇒

(1)

(2)

(3)

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/03b_no_reprojection_exlanation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/05_reprojection_position_result/index.html

Result: Projecting position on plane

: distance of penetration
 37/87

p ​ =i
new p ​ +i d n

d = r ​ −i (p ​ −i a) ⋅ n ​i

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/04_collision_plane_response_position/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/01_collision_sphere_question/index.html

Collision between spheres
Given 2 spheres , .
Collision when

What happen with their velocities ?
,

 38/87

(p ​, v ​, r ​,m ​)1 1 1 1 (p ​, v ​, r ​,m ​)2 2 2 2

∥p ​ −1 p ∥ ≤2 r ​ +1 r ​2

v ​ →1 v ​1
new v ​ →2 v ​2

new

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/02_collision_plane/05_reprojection_position_result/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/02_impulses/index.html

Notion of impulse
An impulse is the integrated force over time

 results in a sudden change of speed (/momentum) in a discrete case

For a particle with constant mass

For an impact

 39/87

J J = ​ F (t) dt∫
t ​1

t ​2

→

​ F (t) dt =∫
t ​1

t ​2

​ ma(t) dt∫
t ​1

t ​2

⇒ J = m v(t ​) − v(t ​)(2 1)

v → vnew

v =new v + J/m

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/01_collision_sphere_question/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/03_impulse_elastic_collision/index.html

Two spheres in collision
Impulse orthogonal to the separating plane between the two surfaces

,

The system with the two spheres is preserving its linear momentum
 Respective impulses are equals in magnitude, and opposed in direction

Assume collision of "hard spheres" "Elastic collision"
 No loss of energy, conservation of kinetic energy of the system

 40/87

J = j u u = (p ​ −1 p ​)/∥p ​ −2 1 p ​∥2

⇒ j
m ​v ​ +1 1 m ​v ​ =2 2 m ​v ​ +1 1

new m ​v ​2 2
new ⇒ m ​(v ​ −1 1

new v ​) =1 −m ​(v ​ −2 2
new v ​)2 ⇒ J ​ =1 −J ​2

=
=
⇒ j = 2 ​ (v ​ −

m ​ + m ​1 2

m ​ m ​1 2
2 v ​) ⋅1 u

1/2m ​ v ​ +1 1
2 1/2m ​ v ​ =2 2

2 1/2m ​ (v ​) +1 1
new 2 1/2m ​ (v ​)2 2

new 2

⇒ m ​v ​ +1 1
2 m ​v ​ =2 2

2 m ​ v ​ + ​u +1 (1 m ​1

j)
2

m ​ v ​ − ​u2 (2 m ​2

j)
2

⇒ 0 = 2 j v ​ ⋅1 u + ​ −
m ​1

j2

2 j v ​ ⋅2 u + ​

m ​2

j2

⇒ j = ​ (v ​ −1/m ​+1/m ​1 2

2
2 v ​) ⋅1 u

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/02_impulses/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/04_update_speed_sphere/index.html

Two spheres in collision

Rem. If : Switch their speeds

Can use restitution coefficient and attenuation

 41/87

v ​ =1
new v ​ +1 j/m ​ u =1 v ​ +1 2 ​ ((v ​ −

m ​+m ​1 2

m ​2
2 v ​) ⋅1 u) u

v ​ =2
new v ​ −2 j/m ​ u =2 v ​ −2 2 ​ ((v ​ −

m ​+m ​1 2

m ​1
2 v ​) ⋅1 u) u

m ​ =1 m ​2 ⊥
v ​ =1
new v ​ +1 ((v ​ −2 v ​) ⋅1 u) u = v ​ +1// v ​2⊥

v ​ =2
new v ​ −2 ((v ​ −2 v ​) ⋅1 u) u = v ​ +2// v ​1⊥

(α, β) ∈ [0, 1]
v ​ =1
new αv ​ +1// β v ​2⊥

v ​ =2
new αv ​ +2// β v ​1⊥

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/03_impulse_elastic_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/05_summary/index.html

Summary
1. Detect collision

2-a. If collision (relative speed)
Elastic collision (/bouncing)

2-b. If static contact (relative speed)
Friction ,
Avoids jittering

3. Correct position (project on contact surface)

: Collision depth

 42/87

∥p ​ −1 p ∥ ≤2 r ​ +1 r ​2

> ϵ

v ​ =1/2 αv ​ ±1/2 β J/m ​1/2

≤ ϵ

v ​ =1/2 μ v ​1/2 μ ∈ [0, 1]

p = p ± d/2u
d = r ​ +1 r ​ −2 ∥p ​ −1 p ​∥2

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/04_update_speed_sphere/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/index.html

Multiple collisions
Pairwise collisions no global collision free state

- Correcting one collision may induce new collisions.
- Order of correction does matter

Reducing time-step help, Iterating over mutliple pass help

But correct solution in all cases is complex global approach
- Precompute contact graph

explicit shock propagation management
- Global constraint-based method

Impulse:
Momentum preservation:
Energy preservation/dissipation

 Linear Complementarity Program, Gauss Seidel, etc.

[Realistic Animation of Rigid Bodies. J. Hahn. SIGGRAPH 1988.]
[Collision Detection and Response for Computer Animation. M. Moore and J. Wilhelms. Computer Graphics 1988.]
[Reflections on Simultaneous Impact. B. Smith et al. SIGGRAPH 2012]
[Guaranteed Resolution of Simultaneous Rigid Body Impact. E. Vouga. ACM SIGGRAPH 2017]

 43/87

⇒

→

n ​ ⋅i (v −i v ​) ≥j 0
m ​v ​ −i i m ​v ​ =j j 0

⇒

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/hahn_1988.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/moore_1988.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/smith_siggraph_2012.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/assets/vouga_siggraph_2017.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/05_summary/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/00_title/index.html

Elastic models

Spring structure
Numerical solution of ODE
Cloth simulation

 44/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/16_rigid_spheres/content/03_collision_sphere/06_collision_stack/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/01_material_category/index.html

Material model
Elasticity: Shape goes back toward its original rest position when
external forces are removed.

-Purely elastic models don't loose energy when deformed (potential
kinetic)

Plasticity: Opposite of elasticity. Plastic material don't come back to
their original shape (/change their rest position during deformation).

- Ductile material - can allow large amount of plastic deformation
without breaking (plastic)
- Brittle - Opposite (glass, ceramics)

Viscosity: Resistance to flow (usually for fluid, ex. honey)

In reality
- Elasto-plastic materials: Allow elastic behavior for small deformation,
and plastic at larger one.
- Visco-elastic materials: Elastic properties with delay.

 45/87

↔

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/01_mass_spring/index.html

Modeling elastic shapes with particles
Spring mass systems

- Particles (position, velocity, mass): samples on shape
- Springs : link closed-by particles in the reference shape

1D curve structure 2D surface structure 3D volume structure

 46/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/01_material_category/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/02_mass_spring_shear_bending/index.html

Spring structure
How to model spring connectivity ?
- Structural springs: 1-ring neighbors springs (mesh edges)

(+) Limit elongation/contraction, (-) Allows shearing, and bending

 Add extra springs connectivity
- Shearing springs: Diagonal links
- Bending springs: 2-ring neighborhood

 47/87

≃

⇒

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/01_mass_spring/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/00_title/index.html

Cloth Simulation

 48/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/01_elastic_shape/02_mass_spring/02_mass_spring_shear_bending/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/01_spring_topology/index.html

Mass-spring cloth simulation
- Particles are sampled on a grid.

- Each particle has a mass ()
- Set structural, shearing and bending springs.

 49/87

N × N

m m ​ =cloth N m2

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/00_title/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02_equation/index.html

Forces
- On each particle: gravity + drag + spring forces

-

- : neighborhood of particle
- : rest length of spring

Associated ODE

 50/87

F ​(p, v, t) =i m ​ g −i μ v ​(t) +i ​K ​ ∥p ​(t) − p ​(t)∥ − L ​ ​

j∈V ​i

∑ ij (j i ij
0)

∥p ​(t) − p ​(t)∥j i

p ​(t) − p ​(t)j i

V ​i i

L ​ij
0 ij

∀i, ​{
p ​(t) = v ​(t)i

′
i

v ​(t) = F ​(p, v, t)/m ​i
′

i i

Q. How can we model the effect of the wind ?

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/01_spring_topology/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02b/index.html

Note on Mass-Spring numerical solution
- Non-linear ODE

- Large : good length preservation, but stiff ODE
 divergence of explicit schemes.

- Avoid explicit Euler (divergence)

- Semi-implicit Euler/Verlet works fine for low
Semi-implicit Euler + PBD allows simple integration + stable stiff springs

[Muller et al. PBD , Inextensible clothing in Computer Games]

- RK4 more accurate (but higher complexity than Verlet)

- Implicit Euler : requires linearization, but very stable

 51/87

K ​ij

⇒

K ​ij

http://matthias-mueller-fischer.ch/publications/posBasedDyn.pdf
http://matthias-mueller-fischer.ch/publications/sca2012cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02_equation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/03_collision/index.html

Collisions
- Simple approach : Handled as collision between particles and shapes

(+) Simple and efficient
(-) Collision may still appears within a triangle

 Exaustive approach: edges + faces

 52/87

⇒

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/02b/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/04_limitations/index.html

Limitation of mass spring model and continuous
model

- Does mass-spring system converge toward a unique solution when sampling increase ?
 No :(
Depends on the connectivity bad for physical accuracy

Corollary

- Mass-springs work well for grid-mesh structure (draping)
- Less for arbitrary triangular meshes

1st improvment: Change toward energy formulation for
bending springs (limits locking effect)

, : curvature

[Cho et al, Stable but Responsive Cloth, ACM SIGGRAPH 2002] 53/87

⇒
→

F = ​

∂p
∂E

E = ​K Lκ
2
1 2 κ

http://graphics.snu.ac.kr/~kjchoi/publication/cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/03_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/05_energy_and_continuous_models/index.html

Triangle as continuous elements
- Defining Bending Energy between triangles

-

[E. Grinspun et al., Discrete Shells, SCA 2003]
(or expressed using forces in [R. Bridson et al., SCA 2003])

- Going toward full FEM numerical resolution
- B. Thomaszewski et al. [SCA 2006], [VRIPHYS 2008], [EG 2009].

 54/87

W ​(x) =B ​(θ ​ −
edges e

∑ e θ ​) ​e
0

h ​e
0

∥e ∥0

e

http://www.cs.columbia.edu/cg/pdfs/10_ds.pdf
https://www.cs.ubc.ca/~rbridson/docs/cloth2003.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/Subdiv_SCA06.electronic.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/seams-vriphys08.pdf
http://www-labs.iro.umontreal.ca/~bernhard/PDF/Thomaszewski09CSL.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/04_limitations/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/06_full_cloth/index.html

Clothing
- Stich 2D patterns together to generate full cloth

- Cloths are developable material (preserve length w/r
their 2D patterns)

[Thalman et al. 2002] [Umetani et al., 2011]

 55/87

http://www.cs.columbia.edu/cg/SC/
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/05_energy_and_continuous_models/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/07_self_collision/index.html

Detecting self collision
Handled as moving point in collision with moving triangle
Inputs
- Triangle , a point
- Each position

Computing intersection
Necessary condition
- Find such that is in triangle plane

: normal of the triangle at time

Sufficient condition
- Check is inside the triangle

,

[X. Provot. Collision and self-collision handling in cloth model dedicated to design garments. Graphics Interface 1997.]
[R. Bridson et al. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM SIGGRAPH 2002]

 56/87

P ​(t)P ​(t)P ​(t)1 2 3 P (t)
P ​(t) =k P ​(0) +k t v ​P ​k

t ​ ∈i [0,h] P (t ​)i
(P (t ​) −i P ​(t ​)) ×1 i n(t ​) =i 0
n(t ​)i t ​i

P (t ​)i
P (t ​) =i αP ​(t ​) +1 i βP ​(t ​) +2 i γP ​(t ​)3 i

(α,β, γ) ∈ [0, 1]3 α + β + γ = 1

https://graphics.stanford.edu/courses/cs468-02-winter/Papers/Collisions_vetements.pdf
https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/06_full_cloth/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/01_introduction/index.html

Animating fluids (I)
Stable Fluid

 57/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/17_cloth/content/03_cloth/07_self_collision/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_solving_in_grid/index.html

Solving Navier-Stokes on grid
"Brute force" approach

- Rectangular grid filled with fluid
- Use finite differences on the grid for Navier-Stokes equation

(-) Stability conditions
(-) Loose advection details on the grid

 58/87

​ =
∂t
∂u

− ​ ∇p +
ρ

1
f − (u ⋅ ∇)u + ν△u

div(u) = 0

[Modeling the Motion of a Hot, Turbulent Gas. N
Foster and D. Metaxas. SIGGRAPH 1997]

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/index.html
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring07/papers/fosterGas.pdf

Stable Fluids - Idea
Well known improvement: Jos Stam, Stable Fluids, ACM SIGGRAPH 1999

- : Pressure term only used to ensure divergence free
- Similar to Lagrange multipler for constraints

1st Idea
Remove pressure term
Replace by explicit projection on divergence free vector field

2nd Idea
Compute each terms one after the other

 59/87

​ =
∂t
∂u

f − (u ⋅ ∇)u + ν△u − ​ ∇p
ρ

1

1/ρ ∇p

P

⇒ ​ =
∂t
∂u

P(f − (u ⋅ ∇)u + ν△u)

u ​u ​ ​u ​ ​u ​ ​uk

​

f

addforces

​→ 1
k

​

ν△u

diffuse

​→ 2
k

​P
project

​→ 3
k

​(u⋅∇)u
advect

​→ k+1

[Stable Fluids. J. Stam. SIGGRAPH 1999]
[Real Time Fluid Dynamics for Games. J.
Stam. Game Dev. Conf. 2003]

https://05f43270-a325-4aeb-a1d8-39e42f0e9fcc.filesusr.com/ugd/cf1fd6_898fe9b63df946689101b8d074f8efba.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_solving_in_grid/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01b_vector_scalar/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/assets/stable_fluids.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/assets/real_time_fluid.pdf

Stable Fluids - General Algorithm

1. Solve
diffusion

2. Enforce
divergence
free

3. Advect u
along itself

1. Solve
diffusion
(optionnal)

3. Advect f
along u

Velocity
u(t)

Scalar field
f(t)

t = t+h

u(t+h)

f(t+h)u(t)

 60/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01_general_idea/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/02_computing_diffusion/index.html

1 - Diffusion
Use finite difference on

Notation:

Explicit schemes may oscillates/diverge for large time steps
 Use implicit scheme for unconditional stability

Assuming

Use Gauss-Seidel iterative method to solve the sparse linear system

Initialize
for

 61/87

​ =
∂t
∂f

ν △f

f ​ =x,y
t f (k ​ Δx, k ​ Δy, k ​ Δt)x y t

⇒

​ =
Δt

f ​ − f ​x,y
k+1

x,y
k

ν ​ + ​(
(Δx)2

f ​ − 2 f ​ + f ​x+1,y
k+1

x,y
k+1

x−1,y
k+1

(Δy)2

f ​ − 2 f ​ + f ​x,y+1
k+1

x,y
k+1

x,y+1
k+1

)

Δx = Δy = 1
(1 + 4 νΔt) f ​ −x,y

k+1 ν Δt(f ​ +x+1,y
k+1 f ​ +x−1,y

k+1 f ​ +x,y+1
k+1 f ​) =x,y−1

k+1 f ​x,y
k

f =k+1 f k

i = 1..N ​max

f ​ =x,y
k+1

​ (f ​ +1+4 a
1

x,y
k a(f ​ +x−1,y

k+1 f ​ +x+1,y
k+1 f ​ +x,y−1

k+1 f ​))x,y+1
k+1 , a = ν Δt

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/01b_vector_scalar/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/03_advection/index.html

2 - Advection
Advection = move some function along given velocity .

- Advecting a scalar field along

- Advecting a vector field along

 62/87

u

f u

(p, t) +
∂t
∂f

u(p, t) ⋅ ∇f = 0

f u

(p, t) +
∂t
∂f

(u(p, t) ⋅ ∇) f = 0

- In Navier-Stokes advect the velocity
itself
- Can also advect density, color,
texture coordinates, etc. to visualize
the motion.

f = u

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/02_computing_diffusion/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/04_computing_advection/index.html

2 - Computing advection
Advecting generic value along

Idea Compute value of at time at fixed position
grid in moving back at .

Value of advected at point at time was at
position at time .

 is not a grid point coordinates: Use interpolation
Can use Bilinear interpolation

 63/87

f u

f t

p t − Δt

f p t

p ​ =prev p − Δt v(p, t) t − Δt

⇒ f (p, t) = f (p ​, t −prev Δt)

p ​prev

f (p ​) =prev (1 − α) (1 − β) p ​ +00 (1 − α)β p ​ +01 α (1 − β) p ​ +10 αβ p ​11

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/03_advection/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/05_divergence_free/index.html

3 - Divergence Free Vector Field

Before projection:

After projection:

 64/87

div(v) = 0
v ​ +x+1,y
x v ​x−1,y

x

+v ​ +x,y+1
y v ​ =x,y−1

y 0

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/04_computing_advection/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/06_projection_computation/index.html

3 - Projection to divergence free vector field
Consider a general vector field
Helmoltz decomposition:

- : Divergence free vector field such that
- : Gradient field , scalar field.

 satisfies a Poisson equation

Method- Given an input field
1. Compute as solution of
2. Compute

 65/87

w

w = u + v

u div(u) = 0
v v = ∇q q

q

div(w) = ​ +

=0

​div(u) div(v) ⇒ div(w) = ​

△q

​div(∇q)

w

q △q = div(w)
u = w − ∇q

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/05_divergence_free/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/07_projection_algorithm/index.html

3 - Projection to divergence free vector field (Algo)
Input vector field
Note: we assume in the following

1 - Compute

2 - Compute in solving

ex. Numerical iterations using Gauss Seidel

Initialize
For

3 - Compute

 66/87

w = (w ,w)x y

Δx = Δy = 1

d = div(w)
d ​ =x,y (w ​ −x+1,y

x w ​ +x−1,y
x w ​ −x,y+1

y
w ​)/2x,y−1

y

q △q = b

(q ​ +x+1,y q ​ −x−1,y 2 q ​) +x,y (q ​ +x,y+1 q ​ −x,y−1 2 q ​) =x,y d ​x,y

⇒ 4q ​ =x,y q ​ +x+1,y q ​ +x−1,y q ​ +x,y+1 q ​ −x,y−1 d ​x,y

q = 0
i = [1..N ​]max

q ​ =x,y 1/4 q ​ + q ​ + q ​ + q ​ − d ​(x+1,y x−1,y x,y+1 x,y−1 x,y)

u = w − ∇q

u ​ =x,y w ​ −x,y q ​ − q ​ , q ​ − q ​ /2(x+1,y x−1,y x,y+1 x,y−1)

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/06_projection_computation/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/08_boundaries/index.html

Handling boundaries
Boundaries , , ,
need special care

- For density
Assume value continuity on the boundary

Row/Column , etc.

- For velocity:
Assume reflexion on walls

Row:
Column:

- In all cases: Average value for corners
, etc.

 67/87

x = 0 x = N ​ −x 1 y = 0 y = N ​ −y 1

C0

f ​ =x,0 f ​x,1 f ​ =0,y f ​1,y

f = (f , f)x y

f ​ =x,0 (f ​, −f ​)x,1
x

x,1
y

f ​ =0,y (−f ​, f ​)1,y
x

1,y
y

f ​ =0,0 (f ​ +1,0 f ​)/20,1

Copy/Reflexion

Average

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/07_projection_algorithm/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/09_example/index.html

Stable fluids example

Amanda Ghassaei 68/87

https://github.com/amandaghassaei/FluidSimulation
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/08_boundaries/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/01_introduction/index.html

Animating fluids (II)
- Procedural
- Level Set
- PIC/FLIP
- SPH

 69/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/19_fluids_I/content/02_stable_fluids/09_example/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/01_model/index.html

Procedural models for free surface water
Often based on Shallow water equation

neglect depth velocity component
[A. Fournier, W. T. Reeves. A simple Model of Ocean Waves, ACM SIGGRAPH 1986]
[D. Hinsiger et al. Interactive Animation of Ocean Waves. SCA 2002]
[Jerry Tessendorf, Simulating Ocean Water, ACM SIGGRAPH Course Notes 2004]

ex. Trochoid/Gerstner models
Particles following circular trajectories, waves propagates

 - dispersion

Used for procedural ocean modeling
(+) Simple and scalable
(-) Interaction with other objects

 70/87

x− x ​ =0 ​ a ​k ​/∥k ​∥ sin(k ​ ⋅∑i i i i i x ​ −0 ω ​ t +i ϕ ​)i
z − z ​ =0 ​ a ​ cos(k ​ ⋅∑i i i x ​ −0 ω ​ t +i ϕ ​)i
ω ​ =i

2 g k ​i

https://dl.acm.org/citation.cfm?id=15894
https://hal.inria.fr/inria-00537490/document
https://people.cs.clemson.edu/~jtessen/reports/papers_files/coursenotes2004.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/02_example/index.html

Free surface water - Example
sizesize 256

choppinesschoppiness 1.5

windXwindX 10

windYwindY 10

sunDirectionXsunDirectionX -1

sunDirectionYsunDirectionY 1

sunDirectionZsunDirectionZ 1

exposureexposure 0.35
Close ControlsClose Controls

Link Three.js 71/87

https://threejs.org/examples/#webgl_shaders_ocean2
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/01_model/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/01_introduction/index.html

Level Set methods introduction
Eulerian models (ex. stable fluids) do not handle natively free boundaries such as fluid/air.
Idea: Track surface boundary using implicit surfaces

- Encode fluid volume by , stored within a 3D grid.
- Solve Navier-Stokes equation within

- Deform fluid volume using implicit surface deformation

Introduced by Ronald Fedkiw, Nick Foster, Stanley Osher (ex. [Practical Animation of Liquids, ACM SIGGRAPH 2001])

 72/87

Ω = {p ∈ R ,φ(p) =3 0} φ

Ω

​ +
∂t
∂φ

u ⋅ ∇φ = 0

http://physbam.stanford.edu/~fedkiw/papers/stanford2001-02.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/02_free_surface/02_example/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/02_particle_level_sets/index.html

Particles Level Set
Limitation of level sets: smoothing and loss of volume from grid interpolation

 Use of Particle Level Set Method
[D. Enright et al. Hybrid Particle Level Set Method for Improved Interface Capturing. J. Comp. Physics 2001]
[D. Enright et al. Animation and Rendering of Complex Water Surfaces, ACM SIGGRAPH 2002]

D. Enright et al.

 73/87

⇒

http://physbam.stanford.edu/~fedkiw/papers/stanford2001-04.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2002-03.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/01_pic_flip/index.html

PIC/FLIP (Material Point Method)
Mix between particles and grid based approach.

- Particles: good for advection
- Grid: forces, pressure, viscosity

: velocity on particle
: velocity on grid

- PIC approach - Transfert velocity from grid to particles

- FLIP approach - Add velocity difference from grid to particles.

- PIC/FLIP : blending b/w two approaches

[Y. Zhu and R. Bridson, Animating Sand as a Fluid, ACM SIGGRAPH 2005]

 74/87

u ​p

u ​g

u ​ =p
k+1 interp(u ​,p)g

k+1 k+1

u ​ =p
k+1 v ​ +p

k (interp(u ​,p) −g
k+1 k+1 interp(u ,p))g

k k

PIC: Stable, smoothed-out

FLIP: Details, few dissipation

https://www.cs.ubc.ca/~rbridson/docs/zhu-siggraph05-sandfluid.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/03_level_sets/02_particle_level_sets/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_mac/index.html

MAC grid
MAC = Marker And Cell

Staggered grid b/w scalar and velocity
Widely used grid storage to handle velocity and scalar values.

- Store scalar (pressure, density), in the center of the cell
- Store velocity components on the cell edges

Improves accuracy and stability

 75/87

(u ,u)x y

pi,j

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/01_pic_flip/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_method/index.html

PIC/FLIP Method
- Transfert particle velocity to the MAC grid (Store velocity on grid)
- Evolve velocity on grid (pressure, forces, viscosity) excepted advection to
- Add velocity difference to particles using interpolation (FLIP approach)
- Blend particle velocity with interpolated grid velocity (PIC/FLIP)
- Advect particles along their new velocity

[F. Ferstl et al., EUROGRAPHICS 2016]

 76/87

uk

uk+1

Δu = u −k+1 uk

http://www.in.tum.de/fileadmin/w00bws/cg/Research/Publications/2016/NBFlip/nbflip.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_mac/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01_introduction/index.html

Animating fluids
SPH

 77/87

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/04_picflip/02_method/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/index.html

SPH - Smoothed Particle Hydrodynamics
Pure Lagrangian approach.

- Sample the fluid volume with particles
- Build a continuous field from local averaging around samples

Use some local weighting kernel
- Express derivatives/Navier-Stokes on the continuous field

Advantages
(+) Particle based - can interact with other models
(+) Scalable

Initial proposed in Astronomy field
[L. Lucy, A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977.]

 78/87

W

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/assets/lucy_77.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01_introduction/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/03_sampling/index.html

Sampling and density
How-to build a continuous field from arbitrary sampled particles ?

Consider arbitrary continuous field
Def. of convolution:

1. Consider a smooth kernel with

Low pass filter applied to A

2. Discrete sampling on

: small volume associated to

 79/87

A(p)
A(p) = (A ⋆ δ)(p) = ​ A(q) δ(p −∫Ω q) dq

W ​h ​ W ​(p) dp =∫Ω h 1
A(p) ≃ (A ⋆ W ​)(p) =h ​ A(q)W ​(p −∫Ω h q) dq

p ​j

A(p) = ​ A(p ​)W ​(p −∑j j h p ​)V ​j j

V ​j p ​j

pj

*

*

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/01b_general_idea/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/04_navier_stokes/index.html

SPH for Navier Stokes
Lagrangian representation on particle

Objective:
1. Express using SPH formulation
2. Then integrate: ex.

Generic SPH representation:
Arbitrary field at position :

For a particle of total mass in the volume :

Usually are distance function :

 80/87

i

m ​ ​ =i dt
dv ​i

​ −

F ​weight

​m ​ gi ​ +

F ​pressure

​​ ∇p ​

ρ ​i

m ​i
i ​

F ​viscosity

​m ​ ν△v ​i i

ρ ​, ∇p ​, △v ​i i i

v ​ =i
k+1 v ​ +i

k Δt F ​ + F ​ + F ​ /m ​(weight pressure viscosity) i

A p ​i A(p ​) =i ​ A(p ​)W ​(p ​ −∑j j h i p ​)V ​j j

m ​i V ​i ρ ​V ​ =i i m ​i ⇒ A(p ​) =i ​ A(p ​)m ​/ρ ​ W ​(p ​ −∑j j j j h i p ​)j

W ​h A(p ​) =i ​A(p ​)m ​/ρ ​ W ​(∥p ​ −
j

∑ j j j h i p ​∥)j

[Desbrun and Cani, Smoothed Particles: A new paradigm for animating highly deformable
bodies, EGCAS 1996]
[M. Muller et al., Particle-Based Fluid Simulation for Interactive Applications, SCA 2003]
[M. Ihmsen et al., SPH Fluids in Computer Graphics, EG STAR 2014]

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/03_sampling/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/05_density/index.html
https://hal.inria.fr/inria-00537534/document
http://matthias-mueller-fischer.ch/publications/sca03.pdf
https://cg.informatik.uni-freiburg.de/publications/2014_EG_SPH_STAR.pdf

Density
: Replace A(p) as

Choice of weight functions
Use a smooth polynomial:
ex.

 81/87

ρ ​i ρ

ρ(p ​) =i ​ ρ(p ​)m ​/ρ ​ W ​(∥p −∑j j j j h i p ​∥)j

⇒ ρ ​ =i ​ m ​ W ​(∥p ​ −
j

∑ j h i p ​∥)j

W ​(d) =h
poly6

​ (h −64 π h9
315 2 d) 0 ≤2 3 d ≤ h

pj

pi

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/04_navier_stokes/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/06_pressure/index.html

Pressure

1. Use symetric gradient b/w (i,j)

2. Express the pressure as a function of the density
Simple approximation:

- : Stiffness property
- : Rest density of the fluid

3. Weight function
Pressure is used to avoid particles to group together

Avoid local maxima non smooth "spiky" function at

 82/87

F ​ =pressure − ​ ∇p ​

ρ ​i

m ​i
i

F ​ =pressure − ​ ∇(p ​ +
ρ ​i

m ​i
i p ​)/2j

F ​ =pressure − ​ ​ m ​ ​ ∇W ​(∥p ​ −
ρ ​i

m ​i ∑j j 2 ρ ​j

p ​+p ​i j
h i p ​∥)j

ρ

p ​ =i s (ρ ​ −i ρ ​)0
s

ρ ​0

⇒ 0
W ​(d) =h

spiky
​ (h −

π h6
15 d) 0 ≤3 d ≤ h

∇W ​(p ​ −h
spiky

i p ​) =j − ​ (h −
π h6
45 ∥p ​ −i p ​∥) ​ 0 ≤j

2
∥p ​−p ​∥i j

p ​−p ​i j ∥p ​ −i p ​∥ ≤j h

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/05_density/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/07_viscosity/index.html

Viscosity

1. Use symetric laplacian b/w (i,j)
 - viscosity depends on velocity differences

2. Weight function
Second derivative should remain positive.
Can use the spiky kernel

 83/87

F ​ =viscosity m ​ ν △v ​i i

F ​ =viscosity m ​ ν △(v ​ −i j v ​)i
F ​ =viscosity m ​ ν ​ m ​ ​ △W ​(∥p ​ −i ∑j j ρ ​j

(v ​−v ​)j i
h i p ​∥)j

W ​(d) =h
spiky

​ h − d 0 ≤2πh6
15 ()3

d ≤ h

△W ​(d) =h
spiky

​ h − d 0 ≤
πh6
45 () d ≤ h

Increasing viscosity ν

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/06_pressure/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/08_summary/index.html

SPH Summary
Set initial conditions

Compute values
- Density:
- Pressure:

Compute forces
-
-

-

Time integration:

 84/87

v ​i

ρ ​ =i ​ m ​ W ​(∥p ​ −∑j j h
poly6

i p ​∥)j

p ​ =i s (ρ ​ −i ρ ​)0

F ​ =weight m ​ gi

F ​ =pressure − ​ ​ m ​ ​ ∇W ​(∥p ​ −
ρ ​i

m ​i ∑j
j=i

j 2 ρ ​j

p ​+p ​i j

h
spiky

i p ​∥)j

F ​ =viscosity m ​ ν ​ m ​ ​ △W ​(∥p ​ −i ∑j
j=i

j ρ ​j

(v ​−v ​)j i

h
spiky

i p ​∥)j

v ​ =i
k+1 v ​ +i

k Δt F ​ + F ​ + F /m ​(weight pressure viscosity) i

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/07_viscosity/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/09_examples/index.html

SPH examples

 85/87

Muller 2003
M. Teschner 2012 - 20M particles

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/08_summary/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/10_acceleration_structure/index.html
http://matthias-mueller-fischer.ch/publications/sca03.pdf
https://graphics.ethz.ch/~sobarbar/papers/Sol12/Sol12.pdf

Acceleration structure
SPH based on pair-wise interation spatial sorting acceleration structure

- Uniform grid: simple and efficient.
- Verlet lists (wider neighborhood, updated every steps only)
- List of vertices per cell, hash table for cell storage
- Spatial sorting for cache efficiency

M. Teschner

 86/87

⇒

n

file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/09_examples/index.html
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/11_sph_extensions/index.html

SPH extensions
(+) Very versatile (interaction between any deforming shapes)

Not only fluids
(-) Not well understood accuracy
(-) Compressible

[Solenthaler et al., Predictive-Corrective Incompressible SPH, ACM
SIGGRAPH 2009]
[Ihmsen et al, Implicit Incompressible SPH, IEEE TVCG 2013]

(-) Limited time step
[Macklin and Muller, Position based Fluids, ACM SIGGRAPH 2013]

(-) Boundaries are hard to handle
[Brand et al., Pressure Boundaries for Implicit Incompressible SPH, ACM

TOG 2018]

 87/87

Bruno Levy

[Macklin and Muller 2013] , [Yu and Turk 2009]

https://graphics.ethz.ch/~sobarbar/papers/Sol09/Sol09.pdf
https://cg.informatik.uni-freiburg.de/publications/2013_TVCG_IISPH.pdf
http://mmacklin.com/pbf_sig_preprint.pdf
https://cg.informatik.uni-freiburg.de/publications/2018_TOG_pressureBoundaries.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/10_acceleration_structure/index.html
http://mmacklin.com/pbf_sig_preprint.pdf
file:///home/damien/epita_ani3D/lecture/_site/04_simulation/pdf/20_fluids_II/content/05_sph/11_sph_extensions/assets/yu_turk_sca2010.pdf

