Affine Transformation

1/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/01_affine_linear_deformation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/01_affine_linear_deformation/index.html

(

Affine/Linear Transformation

Most used deformations p’ = f(p)
can be represented by a matrix — can be sent as uniform parameter to the shader.

- In standard 3D coordinates p = (x, y, 2)
p=Lp+t
L: linear component (3 X 3 matrix)
t: translation

- In homogeneous coordinates p = (:I:, Y, 2, 1)

P = Ap PR AR W (e
A: 4 X 4 matrix ~\ol1) | L. L, L

Properties:
- det(L): Change of volume when applying L to a shape
-LTL =1 = Isometry

2/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/00_title/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/00_title/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html

(

Affine/Linear Deformations

0
0
SZ

0

0
0
0
1

Translation Scaling
t(p) =(x+tz,y+t,z+t;) s(p) = (sz,s, Y, s, 2)
1 0 0 ¢t [5. 0
o1 0 ¢ o s,
1= 0 0 1 ¢, > = 0 O
0 0 0 1 \ 0 0
Shearing
thy(p) — (513 iR)‘yvyaz) ((1) i\ 8 8 \
shy.(p) = (z + Az,y,2) Sh,, = 00 1 o |She
shy.(p) = (z,y + Az, 2) \ 00 0 1)

Usually avoided in Graphics
Note: det(Sh) = 1 — constant volume (but no isometry)

o O O =

O O = O

O = O

_0 O O

Rotation
Several possible representations
(see later)

Note: Isometry

Sh,, =

O O = O
O = O O

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/01_affine_linear_deformation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/01_affine_linear_deformation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/03_rotation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/03_rotation/index.html

Rotations

3D rotations have 3 dof, No unique representation

Matrix Euler Angles Axis angle Quaternion
Rop gy R 3 angles: (a, 3,7) (n, 6) q=(z,y,z,w)
R=| R, R R,. .
Ry Ryy Ry — (Il S1Il (Q) , COS (Q))
gr. Tty TRz Composition of rotation (+) Meaningfull 2 2
RIR=1 around basic axes parameters (+) Composition and
det(R) =1 (-) No direct composition interpolation

Not unique (x-y-z, y-z-X, X-y-X () Less intuitive

' X-Z-X, ...
(+) Computationaly o) components

convenient (+) Meaningfull parameters

(-) Non-explicit dof, () Gimbal-lock

redundancies

4/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/02_translation_scaling_rotation_shearing/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/01_order/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/01_order/index.html

1|t

My = TR = (

0|1

First rotates, then translates

R0

R

0

) (

MngT:(

0 1

First translates, then rotates

) (

0

1

1

0

Rotation always happens around the origin.

)

(

Cautions with transformations order

Take care, order of operation does matter !
Rotation 7, Translationt: rot#*tor = M;=TR # RT = M,

R |t
01
R Rt
0 1

Take care (2): transformation matrices applied to coordinates from right to left.

A

| Beware: Some libraries (old OpenGL, Three.js) apply transformation from "left to right" using transposed matrix multiplication

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/03_rotation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/03_rotation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/02_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/02_exercise/index.html

Affine Transformation Exercises

Q. Express the affine transform (as a 4 X 4 block matrix) corresponding to a rotation R applied around an arbitrary
position pg in space.

>M = ...

Q. Consider a shape defined by a triangular mesh with vertex positions (Pz’)ie[l, N]-
> Express the affine transform allowing to rotate the shape around its barycenter.

6/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/01_order/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/01_order/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/03_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/03_exercise/index.html

s

Affine Transformation Exercises

SRt
Q. Consider the affine transform M parameterized by a scaling s, a M= (0 |1)
rotation R, and a translation . /\
> Express the inverse matrix M ~! with respectto s, R and t D
M-1

7/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/02_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/02_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/01_quaternion/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/01_quaternion/index.html

Interpolating rotation

Do not use componentwise-interpolation on rotation matrix
—> interpolate in quaternion space

Can use either:
- SLERP - Spherical Linear Interpolation
sin((1 — t)Q2) sin(t{2)
Q(t) — . qi1 . q2,
sin({2) sin({2)
Between two unit quaternions q1, q2

with COS(Q) = q1 * Q2

- LERP - Linear Interpolation
q(t) = Rk
1225 og;l]

When blending multiple quaternions q; with weights Q;

Rem.
When interpolating b/w rotations and positions:
Use quaternion with rotation, componentwise-interpolation on position

8/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/03_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/01_affine_transform/04_order_of_operations/03_exercise/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/03_polar_decomposition/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/03_polar_decomposition/index.html

Handling affine transformation : Polar Decomposition

Key-pose transforms are often given as 4 X 4 matrices.

How can we interpolate b/w affine transforms?
- Splitting linear M/translation part is easy.

- Problem: interpolating the linear part M
mixes rotation, scaling, shearing

=> Split M into: rotation part, and scaling/shearing.

- Interpolate rotation with quaternion (ex. SLERP/LERP)
- Scaling/shearing using componentwise interpolation (ex. linear).

- Polar decomposition: M = R D
- R: Rotation matrix

- D: Positive semi-definite matrix
[K. Shoemake and T. Duff, Matrix Animation and Polar Decomposition. Graphics Interface 92. |

- Polar decomposition is obtained from SVD

SVD(M) = WS VT With[R — WV } D= VEVT

- Or numerically, R can be computed using the following iterative
scheme

Ry=M, R;1; =05(R; + (Rz'_l)T)}

B a _/ -
- I:\..._____i_
7 o ,\z‘ _..// I."I
\ /
- _ A
[_;/__
9/16

http://research.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/01_quaternion/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/01_quaternion/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/04_final_algorithm/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/04_final_algorithm/index.html

Handling affine transformation

Algorithm to interpolate between two general 4 X 4 matrices M7, M

1

2

3

4

6

7/

. Extract translation py, py from M7, M.
. Compute R1, Ro (3 X 3 rotation matrices), and D1, Do (3 X 3 scaling/shearing matrices) from My, M
. Interpolate linearly position and scaling/shearing p(t) = (1 — t) p; + t po, D(t) = (1 — t) D1 4+ t D,

. Compute quaternions g1, ¢o from R, R

. M,,—~M,. M, —M,, M,—M,
NoteM%q\mthq:(o y,M2rM, r y,g),r:\/l—l—Mm—l—Myy—l—Mzz

. Compute q(t) =SLERP(q1, o, t)
. Convert back to matrix q(t) — R(t)

. Compute final matrix M (t) = R(t) D(t) with translation p(t).

10/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/03_polar_decomposition/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/03_polar_decomposition/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/01_opengl/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/01_opengl/index.html

Camera and OpenGL

In OpenGL: no real notion of "camera”
Unique viewpoint - cube (x,y, z) € [—1, 1]° - Normalized Device Coordinate

('1111_1)

Left-right/x, Bottom-up/y, Front-back/z (toward negative z) (-1,1,1) (1,1,-1)

No perspective (displays (x,y) for the smallest z)

Any camera effect (position, orientation, perspective)

must be coded "manually" in the shader.
All these effects can be represented as matrices.

(_11_111) (1,_1,_1)

Three common matrices (1,-1,1)

Model matrix . p = Projection X View X Model X pg
Affine transform - specific to a shape. —_—

Local object coordinates to world space. ModelView

View matrix

Rigid transform - position/orientation of the camera in the scene.
World space to camera/view/eye space

Projection matrix

Perspective matrix - map frustum to normalized cube. (/or ortho projection)
Camera space to Normalized Device Coordinate (clip/screen space) 11/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/04_final_algorithm/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/03_interpolation/02_affine/04_final_algorithm/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02_camera_representation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02_camera_representation/index.html

View representation as matrix

Camera parameterized by:

A center ¢; right, up, front unit vectors
expressed in global coordinates

Frame matrix:
Transform unit coordinates into camera vectors

Frame x (1,0,0,0) = right
Frame x (0,1,0,0) = up

Frame x (0,0,1,0) = — front

Frame x (0,0,0,1) =c

Matrix of column-oriented vectors of camera directions

Frame=

x

0,
0

C
1

)

YA

World
space

Frame

X
>

e

Eye

up
/\‘ right

c
~front
Camera

front

w

View

View matrix: inverse of the Frame matrix

Transforms the camera vectors into the unit coordinates

View x right = (1,0,0,0)
View x up = (0,1,0,0)
View x —front = (0,0,1,0)
View x ¢ = (0,0,0,1)

Orientation O can be read on the rows

(
\

View=

(...
(

0

right
up
— front
0

12/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/01_opengl/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/01_opengl/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02b_camera_question/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02b_camera_question/index.html

Camera in shader - Question

Q. In a vertex shader the View matrix is passed as uniform parameter
How can you compute the position of the camera ?

A usefull function to set a point of view is the standard look_at(eye, center, up)
- eye: position of the viewer
- center: position that the viewer is looking at
- up: a direction representing the "vertical direction" of the viewer.

Q. How to compute the View matrix from the look_at parameters ?

13/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02_camera_representation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02_camera_representation/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/01_spherical/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/01_spherical/index.html

Interacting with camera

Camera orientation has 3 degrees of freedom (+ 3 dof in position)

Example of "Spherical camera"
Correct orientation

How to handle a camera orientation using a mouse (2-dof) ?
Assuming a freely oriented camera

Common approaches
Pp Bad orientation of the shape

spherical camera is "stuck" in this
"Spherical camera"/coordinates (6, ¢) orientation
(+) Good to easily "turn around" oriented structure
(-) Lacks a dof: No "twist": position on the unit sphere force the angle
Not adapted to turn around non-oriented/badly-oriented objects.

Spherical coordinates + twist (ex. roll, pitch, yawn)

(+) Precise and complete control
(-) Require an additional key/controler to the mouse to control the 3 dof

14/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02b_camera_question/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/02b_camera_question/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/02_trackball/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/02_trackball/index.html

Interacting with camera - ArcBall/Trackball metaphore

Other approach: ArcBall/Trackball behavior 0« N
3 dof: left/right, top/down, but also twist

Idea: Use the 2D cursor position as "3D point on the trackball"

Motion between 2 cursor positions = 3D Rotation applied to the ball
[K. Shoemake. A User Interface for Specifying Three-Dimensional Orientation Using a Mouse. Graphics Interface, 1992. |

e
Algorithm: el c_:,QaC
Inputs p1 = (p1a;, ply); P2 = (p2m7 sz) in screen coord. 20 50(
qi/2 = ArcBallProjection(p; /2))i/_\\ v
R-= rotation between vectors (ql, q2) / ,/ N
\

ArcBallProjection(p) 4 ,ll \\
d =norm(p) | } q
. | 1
1f(d<]_/\/§) \\ Pie_ r?15u_se_,r 1 -~ - ’@Eﬂon

1= (p,VI— &) N S - U
else // hyperbola RN

q = (p,1/(2d)) \
return q

Note: the hyperbola smoothly extends the sphere in the entire screen. 15/16

https://graphicsinterface.org/wp-content/uploads/gi1992-18.pdf
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/01_spherical/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/01_spherical/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/03_trackball_results/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/03_trackball_results/index.html

Interacting with camera - ArcBall/Trackball metaphore

Natural way to rotate around a shape

(+) No privilegiated axis
No reference configuration, works in incrementing rotations
Behavior is orientation invariant

(-) Less precise than individual dof control
Drift of twist when moving back and forth

16/16

file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/02_trackball/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/06_affine_transformation/pdf/content/04_camera/03_camera_interaction/02_trackball/index.html

