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‘When physically based simulation is needed

- Accurate dynamics
- Teadious to model by hand or procedurally

- Multiple interacting elements: ex. Multiple collisions: rigid bodies, hairs, etc.
- Complex animated geometry: Cloths, fluids
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| General methodology

1. Description of the system
Describe system by some parameters (positions, speed, orientation, etc).
- State of the system is known at time ¢ = 0 - Initial value problem in time
- State of the system may be constrained in space - Boundary value problem in space

2. Evolution
Link the evolution of the system to forces or constraints using dynamic principles and conservation laws
—> Differential equation

3. Numerical Solution
Solve the differential equation using numerical iterative approaches.

Note: Fundamentally different that direct approach controling the trajectories at key-frames
- The system is set at an initial step
- We let the numerical solution build the space-time trajectory for us
(+) Allows to model complex behavior
(-) Lack of control on the result
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Types of Simulation Models

Deformable model

Particle Solid Deformable
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1- Particles
2- Rigid bodies

Fundamental models

3- Continuum models
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| Physically-based particle system

1. Description
Particle is fully described by: Position p, Velocity v, Mass m

Fundamental quantities: position and linear momentum P = mv p(t) U (t)
Linear Momentum preserved in isolated system m

2. Evolution
- Fundamental principle of dynamics
Force applied on particle F'(p, v, t)

{ p'(t) = v(t)
P'(t) = m'(t) = F(p,v,t)

- Conservation of energy (ex. kinetic energy (1/2m v?)+potential energy = const, etc.)

- Lagragian, or Hamiltonian (reduced coordinates)
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Physically-based particle system

3. Numerical Solution
ODE (Ordinary Differential Equation) formulated as an Initial Value Problem

. { p'(t) = v(?)

mv'(t) = F(p,v,t) , withv(0) = v, p(0) = po

- Discretize in time t* = kh, h = At = time step.
= Build a discrete numerical solution p* = p(tk), vF = fv(tk).

- We can consider initially the following iterative scheme

,Uk+1 _ ’Uk L hF(pk,’Uk,tk)
pk+1 _ pk L h,UkJrl

Simple to implement, reasonably OK for simple examples (more details later).

7/30



file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/02_particles/02_model/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/02_particles/02_model/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/03_rigids/00_title/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/03_rigids/00_title/index.html

1- Particles
2- Rigid bodies

Fundamental models

3- Continuum models
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R1g1d body description

- Solid defined within a domain 2 C R?
- With a density of mass p(p;) at each point p; € €2

- Total mass of the solid m

’m=/ p(p;) A2
p; €f)

- Position of the center of mass (com) p

1
p=— o(p;) p; dQ
m p; £}

- Relative position of a position p; with respect to com

r=>p—>P
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Position and speed of a point on the rigid body

The center of mass has, at time ¢,

- a position p(t) t— 0

avelocity p' () = v(t) R(?) L
/
The body has an orientation R/(%) R'(1)
pi (0
A point of the rigid body has
’ ° ’ pi(t)

pi(t) = p(t) + R(t) o
withrg = p;(0) — p(0)

- a position

- a speed[p;(t) = v(t) + R'(t) ro
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Angular speed
Speed of p; : p.(t) = v(t) + R/(t) rg
Introduce angular speed w € R such that

() = v(t) + w(t) x (1)

w = vector expressing the instantaneous rotation of 1 (t)

By identification R’ (¢) rg = w(t) x r(t)
= R/(t) ro = w(t) x (R(t) ro)

Matrix expression of w = (wy, wy, W)

O _wz wy
(;J — wz O _ww

— R'(t) = &(t) R(¢)
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| Rigid body kinematics

Similarily to particles
- Position of the com: p(t)
- Velocity of the com: v(t) = p'(t)

P(t) = muv(t)

Linear Momentum.

(: /Q o vi(t) dQ))

Specific to rigid body
- Orientation of the body: R(#) € R%*3
- Angular velocity of the body: w(t) such that & = R’(¢) R* (¢)

L(t) = 1(¢) w(t) ]

w1th I( ) Inert1a tensor Mass: resistance to change of speed (of the com)

Angular Momentum:

) = IO RT (¢) Inertia: resistance to change of angular speed
/ (rfrIy—rrl)dQ
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(

Inertia tensor

Defining inertia tensor formulation from angular momentum definition

Angular momentum expressed with respect to an arbitrary point pg: 7(p;) = pP; — Po

L:/rx (pr')dQ:/prx (p' +w x r) dQ (first part sum to 0)
Q Q

:>L:/pr><w><rdQ:/pr><(—rxw)dﬂ
0 0

0O -r, ry
:}L:(/‘pf’f;TdQ>w:Iw with 7 = T, 0 — Ty
0 —Try Ty 0
I

Changing the reference frame

= L = (/p(R’FO) (R’FO)TdQ) w = R(/ p(r) 7o fng)RTw:RIORTw
0 0

—_—
Iy
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(

Inertia tensor properties

rz -+ 'rg —TxTy — 71,7,
I = / p(r) —TeTy  To A TI —TyT, dQ}? = / po(r) (r'rId —rrt) dQ
ref ref

— 71T, —TyT, ri —+ frz

- I is usually expressed at the center of mass p

- I depends on the body orientation. Given a rotation R: I = R Iy R*
=> compute once I in a rest position, then update it using R

- There exist a frame in which [ is diagonal (principle axes of inertia).

Corresponds to eigenvectors of matrix 1.
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(

Dynamics: Forces and torques on a solid

- Given a local force f(p;) acting on a position p; € €2
- Contribute to 2 global components applied on the body:

- Total net force F' applied on the shape
Induce change of linear momentum (a displacement of COM)

F = f(p:) dS2

p; €S

- Torque 7 applied on the body
Induce change of angular momentum (spin of the solid)

T:/‘ Q(Pz'—P) x f(pi) dQ
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Dynamics

Similarly to particles
Force F'is related to the change of linear momentum F'(t) = P'(t) = (mv)'(t)

Specific to rigid bodies
Torque T is related to the change of angular momentum 7(t) = L'(t) = (I w)'(t)

Equation of Motion
Fundamental principle of dynamics for rigid body

P v
d P B F
dt R - w R
L T
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Rigid solid dynamics in practice
1. Initial condition
-p(to), v(to), R(to), w(to) given as initial condition

- Precompute Iy = I (%)
- Compute L(ty) = Iy w(tp) .

2. Temporal Evolution
Iterate over time ¢y,

- Compute total force F'(tj) and torque 7(t) P (t) v(t)
- Compute I (t;) = R(tx) Io RT (1) P'(t) _ F(t)
- Compute w(ty) = I(ty) ! L(t) R'(t) w(t) R(¢)
- . . L'(¢) 7(t)
- Numerical integration updating state vector
— (p(tk+1)7 P(tk+1)7 R(tk+1)7 L(tk—l—l)) I(t) - R(t) Lo RT(t)
L(t) = I(t) w(t)
- Handle collision P(t) = mu(t)
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(

Side note: Use of quaternion

Relation R’ (¢) = @(t) R(t) may lead to numerical drift from rotation matrix
ex. R*¥1 = (Id + h @) R*  (explicit scheme)

Using quaternion leads to more robust behavior

- Quaternion expression: ¢’ (t) = % q.(t) q(t), with ¢, (t) = (w(t), 0))

- Quaternion is forced to keep a unit norm

| 2L p%S
¢ =q"/lg"|
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Collisions in rigid bodies
c:%
Collisions at position p change both linear and angular velocity
Use of impulse (sudden change of velocity) J.

J = [T F(t)at

to
Impulse split into

- Forceimpulse AP = mAv = J
- Torque impulse AL = I Aw = (p — Peom) X J

Elastic collision between two solids at position p;:
J = 7 m, n:normal of the separating planes

j = (vi(pi) —va(pi)) -n/K
K=1/mi+1/my+n- (Il_l(rl X n) ><7°1—|—Iz_1(’r‘2 X n) ><7°2)

More details [D. Barff. Physically Based Modeling. SIGGRAPH Course Notes 1999]
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| Rigid bodies usage

- Standard usage for rigid bodies motions
- Limited to non-deformable shapes

- Common in VFX (explosions), and simulation games (cars, airplanes, etc).

- Standard library: Bullet physics (ex. used in Blender).

I

PHYSICS LIBRARY
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1- Particles
2- Rigid bodies

Fundamental models

3- Continuum material

21/30



file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/03_rigids/12_usage/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/03_rigids/12_usage/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/04_continuum_models/02_representation_lagrange_euler/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/15_simulation_models/pdf/content/04_continuum_models/02_representation_lagrange_euler/index.html

-

Deformation of a continuous shape

Every part of the shape can be deformed
ex. Describing elastic shapes, visco-elastic shapes, fluids, etc.

Two ways to describe the deforming object

1. Lagrange representation 2. Euler representation
Positions follow the object deformation Positions are fixed in 3D space
F(t) F(x 0

v(t) \
u(x,t)

\
LV
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Deformation the Lagrangian description

Deformation map ¢ : R3 — R3 such that p = ¢(P)
P position in the reference undeformed shape

P position in the deformed configuration.

Deformation Gradient I’

Op Op Y
-F(P) = 8—P(P) 5P c R

- Characterizes the local deformation associated to ¢

Position P + d P is mapped into o(P + dP) ~ p

X Y Z
R =| 2 o
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Strain

Deformation gradient /' describe both
- Rigid transformation (rotation) - not related to material effort
- Any other deformation inducing local length change - related to material effort

Strain € is a measure of deformation ignoring rigid transformation.

Several possible measure of strain

. S’(.r+u+?d1 +a” dv, v+v +€Tldl+a]\ dy)
- Green strain tensor € = % (F'F T Id) RT"**f*%ﬂﬂ'“-“*‘*a‘.d‘m Z 0
(+) IfSO is a rOtation F — R — € = O P'(x+u,y+v) I'_..":QJ('H“%dl v 61 )
(-) Non linear in p - Iﬂj B N
. : . P (1‘} = O(x+dx,y) eforme
- Linearized Cauchy strain € = 5 (F1 + F') — Id /—\ Yoty

(a) Undeformed

Used for small deformations body

Displacement
vector

Vp = 13]»

v Position
vector

Up=u

&
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Stress o,

Stress 0 € R3*3 describes internal forces (per area unit) induced by the

local deformation (strain) in any direction Oyz
Constitutive Relation: Relation between stress and strain, characterizea o, , ALA

. o
type of material. s Ozy| Oyz vy
For linear constitutive relation: x/\y

Oij = g Ciiki €1, O stiffness tensor (81 coefficients)
k,l
. . . 1 1
Strain energy/elastic potential energy: U = Z oij(e)en = Z Ciiki € €k i
1,7,k,l 1,7,k,l \_/I T
<4—

For homogeneous isotropic elastic material, constitutive relation simplifies to

o = 2ue+ Atr(e)Id, (i, A): Lamé parameters

Related to common mechanical modulus : Young' modulus Y and Poisson's ratio v
L Y \ — Yv
H= 2(14+v)? 7" (14+v)(1—2v)
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Evolution equation

Fundamental principle of dynamics in the entire volume {)

Change of momentum = External forces (in volume) + Traction (stress applied on exterior surface

normals)
= /pp :/F(t)dﬂ+ / ondS
Q 0
N —’ | —
Chcmge of momentum Ezxternal forces Traction force on the boundary

Using divergence theorem /

andS:/ div(o) df)
oS} Q

Equation in volume satisfied at each position p € (2

002 80y$ 00 »z

Oxx Ozy Oz 83w 88y 8(’9z
pp'(t) = F(t) +div(a(t))| o= Oyer Oyy Oyz div(o) = 52‘” §§y gz’”
Oz Ozy Oz 80y | 00y: | o,

ox Oy 0z
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Euler formulation

In Euler formulation quantities are expressed at fixed position in 3D space.

Deformation described by velocity u(p, t) at a given 3D fixed point p = (x, y, 2) at time ¢.

- Do not require anymore a reference shape

- Usefull for heavily deforming shapes (ex. fluids, gaz).

- Change of speed during dt

u(x,t)

e
FUN N

du ou Ou dp; Ou

- t) = | — | -V

at P = 5 Z@pz CORR (- V)u ~ N
Uz ‘( A AN Z)

Called material derivative.

- Similarily to Lagrangian derivation:
- Strain-rate tensor € (rate of change of deformation in a neighborhood of a point)
expressed with respect to u: € = % (Vu + VuT)

- Stress-rate tensor o (rate of change of direction force per area in a neighborhood of a point).
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(

Equation of motion for a fluid

- Fundamental principle of dynamics on linear momentum

d
pd:: = F + div(o)
0
= p 5—? = F +div(o) — p(u-V)u. Theterm (u - V)u is called advection.

- External force: weight F' = p g
- Stress decomposed into

O = Oyiscous T O pressure

Opressure — —P Id (pressure acts along normal of surface elements)
ou
pa —Pg —pPUuU- Vu + div (Uviscous _pId)
ou

— pa — pPg —pu- Vu — Vp+d1V (Uvz'scous)
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(

Navier-Stokes equation

- Isotropic Newtonian fluid = Linear (scalar) relation between strain-rate € and stress-rate 0 ;scous
- Oyiscous = 2 € = (Vu + VUT) , 4 constant viscosity parameter
- Incompressible fluid = div(u) = 0

Equation of motion

:xpg?:pg—pu-Vu—Vp+diV(M(W+V“T))

- Noting that div(Vu!) = V div(u) = 0
-And div(Vu) = Au

-Setv = u/p
0 1
TIPS
ot 0

Navier-Stokes equation for incompressible Newtonian fluid.
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Numerical solutions

Lagrangian and Euler description leads to PDE (Partial Differential Equations)
In general: no explicit solutions = approximate numerical solution S

Finite Differences (FD)
- Discretize in space on a grid Ax and time At

- Use numerical approximation of derivatives using masks in space and time

(+) Very general, simple to setup sH 91?
(+) Works well with rectangular grid (ex. Euler description) 12 3 4
(-) Difficult to handle shape boundaries

(-) Instabilities

Finite elements method (FEM)

- Discretize the shape into simple elements. Build continuous function on each element.
In CG: Elements are tetrahedron (in volume). Continuous function are barycentric coordinates (linear
interpolation functions).

- Integrate PDE over each element (weak formulation), leads to a linear system
(+) Handle boundaries (ex. Deforming solid)
(+) Guarantee on accuracy
(-) Complex to set up, and computationally heavy
(-) Requires good quality meshing
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