
Physically based simulation - Models
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When physically based simulation is needed
- Accurate dynamics
- Teadious to model by hand or procedurally

- Multiple interacting elements: ex. Multiple collisions: rigid bodies, hairs, etc.
- Complex animated geometry: Cloths, fluids
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General methodology
1. Description of the system

Describe system by some parameters (positions, speed, orientation, etc).
- State of the system is known at time  - Initial value problem in time
- State of the system may be constrained in space - Boundary value problem in space

2. Evolution
Link the evolution of the system to forces or constraints using dynamic principles and conservation laws

 Differential equation

3. Numerical Solution
Solve the differential equation using numerical iterative approaches.

Note: Fundamentally different that direct approach controling the trajectories at key-frames
- The system is set at an initial step
- We let the numerical solution build the space-time trajectory for us
(+) Allows to model complex behavior
(-) Lack of control on the result
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Types of Simulation Models
Deformable model

Particle Solid Deformable

Collision/Constraint Handling
Force based Impulse based Position based
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Fundamental models
1- Particles
2- Rigid bodies
3- Continuum models
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Physically-based particle system
1. Description

Particle is fully described by: Position , Velocity , Mass 
Fundamental quantities: position and linear momentum 
Linear Momentum preserved in isolated system

2. Evolution
- Fundamental principle of dynamics

Force applied on particle 

- Conservation of energy (ex. kinetic energy ( )+potential energy = const, etc.)

- Lagragian, or Hamiltonian (reduced coordinates)
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Physically-based particle system
3. Numerical Solution

ODE (Ordinary Differential Equation) formulated as an Initial Value Problem

ex.  with 

- Discretize in time ,   time step.
 Build a discrete numerical solution .

- We can consider initially the following iterative scheme

Simple to implement, reasonably OK for simple examples (more details later).
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Fundamental models
1- Particles
2- Rigid bodies
3- Continuum models
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Rigid body description
- Solid defined within a domain 
- With a density of mass  at each point 

- Total mass of the solid 

- Position of the center of mass (com) 

- Relative position of a position  with respect to com
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Position and speed of a point on the rigid body
The center of mass has, at time ,

- a position 
- a velocity 

The body has an orientation 

A point of the rigid body has

- a position 

with 

- a speed 
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Angular speed
Speed of : 

Introduce angular speed  such that

  vector expressing the instantaneous rotation of 

By identification 

Matrix expression of 
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Rigid body kinematics
Similarily to particles

- Position of the com: 
- Velocity of the com: 

Linear Momentum:  

Specific to rigid body
- Orientation of the body: 
- Angular velocity of the body:  such that 

Angular Momentum: 

with : Inertia tensor
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Mass: resistance to change of speed (of the com)
Inertia: resistance to change of angular speed
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Inertia tensor
Defining inertia tensor formulation from angular momentum definition

Angular momentum expressed with respect to an arbitrary point : 

 (first part sum to 0)

 with 

Changing the reference frame
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Inertia tensor properties

-  is usually expressed at the center of mass 

-  depends on the body orientation. Given a rotation : 
 compute once  in a rest position, then update it using 

- There exist a frame in which  is diagonal (principle axes of inertia).
Corresponds to eigenvectors of matrix .
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Dynamics: Forces and torques on a solid
- Given a local force  acting on a position 
- Contribute to 2 global components applied on the body:

- Total net force  applied on the shape
Induce change of linear momentum (a displacement of COM)

- Torque  applied on the body
Induce change of angular momentum (spin of the solid)
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Dynamics
Similarly to particles

Force  is related to the change of linear momentum 

Specific to rigid bodies
Torque  is related to the change of angular momentum 

Equation of Motion
Fundamental principle of dynamics for rigid body

   16/30

F F (t) = P (t) =′ (mv) (t)′
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Rigid solid dynamics in practice
1. Initial condition

- , , ,  given as initial condition
- Precompute 
- Compute 

2. Temporal Evolution
Iterate over time 

- Compute total force  and torque 
- Compute 
- Compute 

- Numerical integration updating state vector
 

- Handle collision
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Side note: Use of quaternion
Relation  may lead to numerical drift from rotation matrix

ex.  (explicit scheme)

Using quaternion leads to more robust behavior

- Quaternion expression: , with 

- Quaternion is forced to keep a unit norm

ex. 
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Collisions in rigid bodies

Collisions at position  change both linear and angular velocity
Use of impulse (sudden change of velocity) .

Impulse split into
- Force impulse 
- Torque impulse 

Elastic collision between two solids at position :
, : normal of the separating planes
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1 1 2

−1
2 2)

More details [D. Barff. Physically Based Modeling. SIGGRAPH Course Notes 1999]
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Rigid bodies usage
- Standard usage for rigid bodies motions

- Limited to non-deformable shapes
- Common in VFX (explosions), and simulation games (cars, airplanes, etc).
- Standard library: Bullet physics (ex. used in Blender).
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Fundamental models
1- Particles
2- Rigid bodies
3- Continuum material
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Deformation of a continuous shape
Every part of the shape can be deformed

ex. Describing elastic shapes, visco-elastic shapes, fluids, etc.

Two ways to describe the deforming object

1. Lagrange representation
Positions follow the object deformation

2. Euler representation
Positions are fixed in 3D space

F(x,t)

u(x,t)
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Deformation the Lagrangian description
Deformation map  such that 

 position in the reference undeformed shape
 position in the deformed configuration.

Deformation Gradient 

- 

- Characterizes the local deformation associated to 

Position  is mapped into 

- 

   23/30

φ : R →3 R3 p = φ(P )
P

p

F

F (P ) = ​ (P ) =
∂P
∂φ

​ ∈
∂P
∂p R3×3

φ

P + dP φ(P + dP ) ≃ p + ​ dP
∂P
∂φ

F (P ) = ​ ​ ​ ​ ​⎝
⎛ ​∂X

∂φ ​x

​∂X
∂φ ​y

​∂X
∂φ ​z

​∂Y
∂φ ​x

​∂Y
∂φ ​y

​∂Y
∂φ ​z

​∂Z
∂φ ​x

​∂Z
∂φ ​y

​∂Z
∂φ ​z ⎠

⎞
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Strain
Deformation gradient  describe both

- Rigid transformation (rotation) - not related to material effort
- Any other deformation inducing local length change - related to material effort

Strain  is a measure of deformation ignoring rigid transformation.

Several possible measure of strain
- Green strain tensor 

(+) If  is a rotation   
(-) Non linear in 

- Linearized Cauchy strain 
Used for small deformations
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F

ϵ

ϵ = ​ (F F −2
1 T Id)

φ F = R⇒ ϵ = 0
p

ϵ = ​ (F +2
1 T F ) − Id
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Stress
Stress  describes internal forces (per area unit) induced by the
local deformation (strain) in any direction
Constitutive Relation: Relation between stress and strain, characterize a
type of material.

For linear constitutive relation:
, : stiffness tensor (81 coefficients)

Strain energy/elastic potential energy: 

For homogeneous isotropic elastic material, constitutive relation simplifies to
, : Lamé parameters

Related to common mechanical modulus : Young' modulus  and Poisson's ratio 
, 
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σ ∈ R3×3

σ ​ =ij ​ C ​ ϵ ​

k,l

∑ ijkl kl C

U = ​ ​σ ​(ϵ)ϵ ​ =
2
1

i,j,k,l

∑ ij kl ​ ​C ​ ϵ ​ ϵ ​

2
1

i,j,k,l

∑ ijkl ij kl

σ = 2μ ϵ + λtr(ϵ) Id (μ,λ)
Y ν

μ = ​2(1+ν)
Y λ = ​(1+ν)(1−2ν)

Y ν
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Evolution equation
Fundamental principle of dynamics in the entire volume 
Change of momentum = External forces (in volume) + Traction (stress applied on exterior surface
normals)

Using divergence theorem 

Equation in volume satisfied at each position 
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Ω

⇒ =

Change of momentum

​​ ρ p (t) dΩ∫
Ω

′′
​ +

External forces

​​ F (t) dΩ∫
Ω

​

Traction force on the boundary

​​ σ ndS∫
∂Ω

​ σ ndS =∫
∂Ω

​ div(σ) dΩ∫
Ω

p ∈ Ω

ρ p (t) =′′ F (t) + div(σ(t)) σ = ​ ​ ​ ​ ​⎝
⎛ σ ​xx

σ ​yx

σ ​zx

σ ​xy

σ ​yy

σ ​zy

σ ​xz

σ ​yz

σ ​zz
⎠
⎞
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∂σ ​yy

∂z
∂σ ​zy

​ + ​ + ​∂x
∂σ ​xz
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Euler formulation
In Euler formulation quantities are expressed at fixed position in 3D space.
Deformation described by velocity  at a given 3D fixed point  at time .

- Do not require anymore a reference shape
- Usefull for heavily deforming shapes (ex. fluids, gaz).

- Change of speed during 

Called material derivative.

- Similarily to Lagrangian derivation:
- Strain-rate tensor  (rate of change of deformation in a neighborhood of a point)

expressed with respect to : 
- Stress-rate tensor  (rate of change of direction force per area in a neighborhood of a point).
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u(p, t) p = (x, y, z) t

dt

​ (p, t) =
dt
du

​ +
∂t
∂u

​ ​ ​ =
i

∑
∂p ​i

∂u

u ​i

​​

dt
dp ​i

​ +
∂t
∂u

(u ⋅ ∇)u

ϵ

u ϵ = ​ ∇u + ∇u2
1 ( T )

σ

u(x,t)
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Equation of motion for a fluid
- Fundamental principle of dynamics on linear momentum

.  The term  is called advection.

- External force: weight 
- Stress decomposed into

 (pressure acts along normal of surface elements)
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ρ ​ =
dt
du

F + div(σ)

⇒ ρ ​ =
∂t
∂u

F + div(σ) − ρ (u ⋅ ∇)u (u ⋅ ∇)u

F = ρ g

σ = σ ​ +viscous σ ​pressure

σ ​ =pressure −p Id

ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u + div σ ​ − p Id( viscous )

⇒ ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u − ∇p + div σ ​( viscous)
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Navier-Stokes equation
- Isotropic Newtonian fluid  Linear (scalar) relation between strain-rate  and stress-rate 

- ,  constant viscosity parameter
- Incompressible fluid  

Equation of motion

- Noting that 
- And 
- Set 

Navier-Stokes equation for incompressible Newtonian fluid.
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⇒ ϵ σ ​viscous

σ ​ =viscous 2μ ϵ = μ ∇u + ∇u( T ) μ

⇒ div(u) = 0

⇒ ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u − ∇p + div μ ∇u + ∇u( ( T ))

div(∇u ) =T ∇ div(u) = 0
div(∇u) = △u

ν = μ/ρ

⇒ ​ =
∂t
∂u

g − (u ⋅ ∇)u − ​ ∇p +
ρ

1
ν△u
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Numerical solutions
Lagrangian and Euler description leads to PDE (Partial Differential Equations)

In general: no explicit solutions  approximate numerical solution

Finite Differences (FD)
- Discretize in space on a grid  and time 
- Use numerical approximation of derivatives using masks in space and time

(+) Very general, simple to setup
(+) Works well with rectangular grid (ex. Euler description)
(-) Difficult to handle shape boundaries
(-) Instabilities

Finite elements method (FEM)
- Discretize the shape into simple elements. Build continuous function on each element.

In CG: Elements are tetrahedron (in volume). Continuous function are barycentric coordinates (linear
interpolation functions).

- Integrate PDE over each element (weak formulation), leads to a linear system
(+) Handle boundaries (ex. Deforming solid)
(+) Guarantee on accuracy
(-) Complex to set up, and computationally heavy
(-) Requires good quality meshing    30/30

⇒

Δx Δt
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