Numerical solution of ODE
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General formulation

Consider relation given a system of first order differential equation
Mechanical systems are often expressed as

- single equation of second order in p
- system of first order inu = (p, v)

In general, we can write

uw'(t) = F(u(t),t)

If F is an affine function in u

u'(t) = A(t) u(t) + b(t)

When A is constant through time
u'(t) = Awu(t) + b(t)
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Example: Free fall under gravity A
-Force F'(t) =mg Vv(t)

- Second order differential equation: p’(t) = g P(t)‘//----_\
t

- First order system ( 5 )l(t) - ( UEJ) )

9
| A l
u'(t) F(u,t)

-Linearsystem(z,; )l(t): ( 8 (1) ) (5 )(t)+ ( 2 )

—_— S
v (t) A u(t) b(t)

1
- Exact solution known: p(t) — 5 g t2 +vg t + Po

Note: variables are vectors - matrix can be expressed by block, or per components.
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Example: 1D spring (/Harmonic oscillator)

-Force F'(t) = —k (p(t) = 1°) ,k sprmg stiffness, lO rest length
- Second order differential equation: m p” (t) + kp(t) = k1°

- First order system ( 5 )l (t) = ( k/mrz (t) — lO

B, M, —e

N’ %/—/
u'(t) F(u,t)

T . 0

— .
u (t) A u(t) b

- Exact solution known: p(t) = A sin(wt + ¢) + °

w=k/m,A* = (p" —1")* + (?:)2’ tan(e) = p”z();‘jo
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- Second order differential equation: m p (t) mg — k (H p( )|| )

. ’ v(t)
- First order system ( 5 ) (t) = ( g — k/m(|lp(t)] — 1% p(t) )

Example: 3D mass spring

-Force F(t) =mg — k (||p(t)] — ) ( )H , k spring stiffness, [° rest 1ength

||p II

, N [le(®)II ’

w(t) Flust)

- Not linear k
- No simple explicit solution
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Existence of solution

Solving the physical system = Solving the Initial Value Problem (IVP)
- Find the solution of v’ () = F(u,t),t > 0
- With initial condition u(t — O) = Uy

Cauchy-Lipschitz (/Picard-Lindelof) theorem states that
If F is Lipschitz with respect to © and continuous with respect to ¢
Then there exists a unique solution u(t).

The solution is called the integral curve of the IVP.

- JF can be seen as a vector field
(Vector field in 6D for p(t) € R?, v(t) € R?)
- Solution is a path along this vector field passing by uy
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olving the ODE exactly

Equation is linear Equation is non linear
Homogeneous, constant coefficients No general method

u'(t) = Au(t), u(0) = ug
= u(t) = up exp(At)

—> Numerical approaches are required most of the time

Non-Homogeneous, constant coefficients
u'(t) = Au(t) + b(t), u(0) = ug
t
= u(t) = ug exp(At) +exp(At) / b(t") exp (—At') dt
t'=0

Homogeneous, variable coefficients
u'(t) = A(t) u(t), u(0) = ug

—> No closed-form solution in the general case

t
- Rem. Unfortunately, in general, u(t) is not ug exp ( / A(t) dt')
0
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Numerical solution

1st order Explicit Euler
Naive numerical scheme: Approximation of the derivative

k+1 k

= F(u®,t")

k+1 _ , k k o4k
—u u' + hF(ut, ) For a single particle with p, v variables:
In the linear case { vl = oF + W F(uF, t%) /m

uk+1:(I_|_hA) uk_l_hbk PkH:pk ——h’ljk

Pro : very easy to implement

k

Isu”™ a good approximation of the true solution fi],(tk ) ?
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Explicit Euler - study case

Free fall under gravity

- True solution w(k h) = pg + (k h)vg (k;‘)z

. D k+1 1 h p k 0
- Numerical scheme: — 4
v 0 1 v h g

- Numerical solution: p* = pg + k h v - k(k2— L) 2 g

= Notexact : Error e” = |[u* — @(k h)| = 2k h’

red: true solution
blue: numerical solution
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Explicit Euler - study case

1D spring
- True solution: permanent oscillation

P k+1 1 h D k 0
-Numericalscheme:(v) :( —K/’mh 1 )(U> +<K/mhl0)

- Numerical solution diverge to o0
- Worse than bad accuracy for Graphics

red: true solution
red: numerical solution
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Explicit Euler - study case

1D spring: Analysis of the system energy

-Energy B/ = %’mfvz + %(p —19)2
1 K ? 2
EFL — ik (—At (pk - lO) -+ ka) +-K (pk + Atv® — lO)
m
1 1 1 | K?
BN = om(v")’ + SK(p" = 1) + 5 | —(A°(p" — 1) = 2KAL (p* — 1) v" + 2K At (p" — ") v" + K(A)* (v")°
) ps © T 5 ’ %
Ek - >0

—> gain of energy

—> divergence
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Accuracy of a numerical method - general definition

- Define the local truncation error 7:
Error accumulated during one step, assuming perfect knowledge of the true solution
e = ||a(t®) — u¥||, assuming u* ! = @ (¢* 1)

- A numerical scheme is said to be accurate of order £k, if its local truncation error is in O(th ).

Explicit Euler is of order 1, at every step we add an error in O (h2 ).
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Stability of a numerical method - general definition

- Classical stability of a method studied on u'(t) = Au(t), A € C. y
. ~ . A - numerical solution diverge A - numerical solution converge
- The true solution % (t) = exp(At) converge if R,(A) < 0. (ot catastoptic n 1t
- For linear system, \ refers to eigenvalues of A.

- For non linear system, \ refers to eigenvalues of the Jacobian of F

- A numerical method is unconditionnaly stableif R,(A) < 0 > —
=> stable discrete solution. A A o wosoion e
. . . e o - true solution converge - numerical sc')lu.tion div§rge
- Otherwise, it is conditionnally stable/unstable. ¥ imencalisioncomere (Catasiopr ingraphic)
- Region of stability:

Set of conditions on A such that the discrete solution doesn't diverge.

> >
Rem. V V
- A numerical solution can diverge even when the true ODE solution converge when using unstable numerical method.

- Converseley, a numerical solution can converge even when the true ODE solution diverge when using stable numerical method.

- Stability ! = Accuracy.
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Stability analysis of explicit Euler ALY

u'(t) = Au(t) unstable

= = uF + A uF using explicit Euler @

=yt = (14 Ah)u” Sl/h Re(;\)
=> Stable if |1 + A h| < 1 (conditionnal stability) W

11/h + A| < 1/h: Interior of a disc centered on (—1/h, 0) with radius 1/h

Rem. For 1D elastic spring
— ::i\/K/m
= |1+ iy/K/mh| =+/1+ K/mh? > 1

— Explicit euler is always unstable on the elastic spring problem.
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Other approach: Implicit method
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Other approach: Implicit Euler

Explicit Euler Implicit Euler

yktl — ok s h]-—(uk, tk) yktl — ok 4 h}'(ukJrl, tk+1)

k k+1

u” 1s known to compute u uhtl appears in RHS

. = Need to solve u* ™ — b F(u, 1) = o/f
- In the linear case

ut = (I+ hA)u® + hb(tF)

- In the linear case : solve a linear system
uk—l—l _ uk 4 h (Auk—l—l + b(tk+1))
= "l =1I-hA)? (uk — hb(tkﬂ))
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Implicit Euler - study case

Free fall under gravity

- True solution % (k At) = pg + (k At)vg k At)z 9

 Numerical scheme: ( )Hl ( ) (( g )k+ ( ; ))

-(1) (e D)) -5

k(k+1)

- Numerical solution: pk = po + (k At)vg - 5

= Not exact : Error e = \uk — ﬂ(k At)| — %(At)zg

Same error magnitude than explicit Euler

)

(At)* g

- red: True solution
- magenta: Implicit Euler
- blue: Explicit Euler
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Implicit Euler - study case

1D spring
- True solution: permanent oscillations

k+1
- Numerical scheme: p — 1
\ v K/mh

k+1
N D B 1 1 h
v  1+h*K/m _K/mh 1

K
Eigenvalues of (I — Ah) ™! are 1£iy/ 2R

142 p?
N 1+iq/Eh
1+ £ p2

Even if the true solution oscillates

—h
1

)(

) |

p
()

'

— \/hi ) < 1 = always converge .

(

_|_

E

)

K/mh?1°

K

/mhl’

0
K/mhl°

)

)
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| Stability analysis of Implicit Euler

What are the general conditions for which u/(t) = X u(t) converge using Implicit Euler ?

k1l _ .k k+1
U =u®+hu A]Im()\)

= (1 — h ) uft =*

k+1 1 k
= U = 1 U

1 stable

Stability condition:
Y 1 — kA

<1l=1[1-h)>1

'1/h — A| > 1/h: exterior of a disc centered on (1/h, 0) with radius 1/h

=> Fully enclose R.(\) < 0
— Implicit euler is unconditionally stable
Rem. May converges even when the true solution does not.
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(

Comparison Explicit Euler / Implicit Euler

Explicit Euler Implicit Euler
_yktl — gk e hf'(uk, tk) _yktl — ok 1 h}‘(ukJrl’ tk+1)
~u* = (I+ hA)u® + hb(tF) ~uftt = (I—hA)™ (u* + hb(tFH))
- Accuracy: 1st Order - Accuracy: 1st Order
- Stability: - Stability:
Conditional |1 + hA| > 1 Unconditionnaly stable
Solution to spring model diverges Solution to spring model converge to [’
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Higher order methods
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Higher order method - RK

Higher accuracy can be achived using Taylor expansion.
h? dF
ex. u" ™ = uF + h F(uF, t*) 1 ST, (u®, %)

- Second order accurate: 2nd order explicit Euler

- Higher order can achieve arbitrary accuracy.
- In practice: computing derivatives of J is complex.
—> Not often used in practice

Instead: Runge Kutta
- Reach higher order accuracy

- Only involve the knowledge of J, without its derivatives
- Involves several successives evaluations of F
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Runge-Kutta methods

RK?2 and Midpoint are 2nd order accurate, still not
stable for harmonic oscillator.

RK2 RK4 (Classical Runge-Kutta)

W — ko % (kp + k) ki = h F(u”,tF) k h

ki = h F(uF, t") ky=hF (o' + 2t + o

ky = hF(u" + ki, ¥ + h) ks = hF u’“+%,t’“+g
Midpoint method ks = hF (uf + ks, t* + h)

ki = h F(u*, t*) uFtt = b 4 1(k1 + 2ks + 2ks + k)

ky = h F(u* + ki /2,85 + h/2) 6

uw = ub + h ks 4th order, conditionally stable
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RK4 - Case study

- Rk4 conditionally stable for oscillating spring

Not permanent oscillations: Slight decrease of magnitude through time
- Large improvement of accuracy compared to implicit -
Euler
h? h3 1

Stability region: |1 + h\ + —)\ + E)\g + ﬂh4)\4 <1

In the case of oscillating spring: A = i1/ K /m =

3 4
Stable if |1 4 ihw — % w? — i w3 + 34&) <1
RO WO h8w®
= 1-"5 t 5 =1

= RS wb (h2w? — 8)/576 < 0

1A
WY V"‘V

= 0.2, errorrk4 ~ 10~ 4
red. true solution

- black: rk4
- magenta: implicit Euler

RK4

RK2

Explicit
Euler

«
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Introduction to symplectic methods

Standard approaches trade-off
- Explicit methods: (+) Simple to compute, (-) limited stability
- Implicit methods: (-) Hard to compute (especially on non linear functions), (+) very stable
- Oscillatory systems are not easy to model
(-) Numerical solution either diverge or converge.

Symplectic approach
- Remark: Mechanical systems have position and velocity variables
- Derivative of position is linear w/r velocity
- Derivative of velocity is more complex (forces - non linear)

—> General idea: separate treatment of velocity and position

Semi-implicit:
- Implicit scheme for position p**1 (linear part)

- Explicit scheme for velocity pFtl (

k+1

non linear part)

k41

—> In practice: use velocity v™ "~ to evaluate p

Pro
(+) As simple as explicit method to implement
(+) Improved stability

(+) Well adapted to oscillatory systems
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Semi implicit method

Simplest semi-implicit method: Semi-implicit Euler / Verlet

General case
,Uk+1

pk—l—

Application to classical mechanical cases

k

— VUV -
1 _ .k
_p—

- h FL,(pF, v*, t%)
—hfp( k,vkﬂ,tk)

p'(t) = v(t),mv'(t) = F(p,t)

-

p

,Uk—l—l
— k41

L

:'Uk—

:pk —

(+) Trivially easy to convert explicit Euler to semi-implicit

Euler

Expressed using positions only

p*t =p* + h(v" + hF(p*,t"))
2 _

Pl = pk | (p =

= p*l =2pF —p* 1 L B2 F(p,t)/m

1st order accurate (like explicit/implicit Euler) in position and speed.

| hF(pk,tk)/m)
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(

Stability on oscillatory system
1D spring system: F (p vF,tR) = —K p¥
pttl =2pF — ph- th/mp
=p"' = (2-h*K/m)p" —p*
Stable and permanent oscillation when h < \/; — 2

Q. How can we demonstrate it ?

Note: h < 2/w only valid for one 1D spring. Coupled 3D springs may require smaller value of h.
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-

Use of semi-implicit
—K(p — Ly)

Ex. Elastic Spring: F'(p)

Explicit Euler

for(int k=0; k<N; ++k) {
p =p + h*v;
Y% v + h * F/m;

¥
(-) Always diverges for elastic problem

Semi-Implicit Euler
for(int k=0; k<N; ++k) {
v + h * F/m;

p + hxv;

Y
P

}
(+) Permanent oscillation for sufficiently small h.

— Extremly simple change !

Big gain in stability
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| Higher order symplectic

2nd order Velocity Verlet

- Remains stable with permanent oscillation for h <

- Still simple to implement

Example for 1D elastic spring
for(int k=0; k<N; ++k) {

v + h/2 = (=K/m*xp);

p + hxv;

v + h/2 * (-K/mxp);

\Y/

P
Y%

pRt1/2 — ok o % F(pk, vk, tk)/m
pk—l—l _ pk L hvk—|—1/2
pFtl _ Uk+1/2 4+ g F(pk+1,vk+1/2, tk+1)/m

2

7/ K/m
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s

Comparison between approaches

Smallh = 0.2/w

A

True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 - best behavior (undistinguishable from true solution)

30/34



file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/18_numerical_solution_ode/pdf/06_semi_implicit/05_velocity_velvet/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/18_numerical_solution_ode/pdf/06_semi_implicit/05_velocity_velvet/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/18_numerical_solution_ode/pdf/06_semi_implicit/07_comparison_2/index.html
file:///Users/damien/Dropbox/drive/teaching/2023_2024/inf585/lecture/inf585_lecture_slides/_site/18_numerical_solution_ode/pdf/06_semi_implicit/07_comparison_2/index.html

Comparison between approaches
Larger h = 1.0/w

|

Ti empoml evolution of p Temporal evolution of energy I/ =
1/2m (v®)% + 1/2K (p*)?
True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 loose energy and pk converge toward [°
- Symplectic integrator keep oscillating

’\/\/\/‘\[xMmmm'\/\ I A
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Summary and extensions
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Numerical integration of ODE

General formulation: v’ () = F(u,t), u(t)

Explicit Euler
uFtl = ok + At F(u, %)
(+) Easy to implement
(-) Worst scheme in all cases (divergence, low

accuracy)

Explicit Runge-Kutta
ub Tt = uF 4+ At D ik,
(+) Good accuracy
(+) Efficient to apply
(+/-) Stability OK for non-stiff problem, diverge on
stiff problem

(-) Artificial damping for constant energy system

(p(2),v(2)).

Implicit methods
uk+tl — oF At F(uk+1’ tk+1)
(+) Good to deal with stiff problem - very stable
(-) Add numerical damping (converge even if solution
oscillates)
(-) Hard/computationally costly to apply on non

linear problem

Symplectic integrator
vPt = of + At F*/m
pk+1 _ pk o+ At ,Uk+1
(+) Handle well constant energy system, preserves
energy (Hamiltonian systems)
(+) Simple and efficient to implement
(-) Less accurate than RK

(-) Diverge on stiff problem
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Position based dynamics (PBD)

PBD - Use symplectic integrator expressed using position only
- Velocity is computed implicitly as (p* ™! — p*)/h
- Handle constraints using explicit projection of positions.
- Interesting to handle non-linear/stiff constraints

PBD algorithm
For all k
Integrate position (without constraints) p[k+l]=integrator(p[k],v[k],t)
For all constraints
Project p[k+1l] on constraints
Compute new speed v[k+1]=(p[k+1]-p[k])/h

(+) Unconditionnaly stable even for stiff constraints
(+) Simple to implement

(-) Low accuracy, no energy preserving Very popular in Computer Graphics

[ M. Muller et al. Position Based Dynamics. VRIPHYS 2006 |

Extensions: XPBD, Projective dynamics, ...
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