
Numerical solution of ODE
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General formulation
Consider relation given a system of first order differential equation

Mechanical systems are often expressed as
- single equation of second order in 
- system of first order in 

In general, we can write

If  is an affine function in 

When  is constant through time
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p

u = (p, v)

u (t) =′ F(u(t), t)

F u

u (t) =′ A(t)u(t) + b(t)

A

u (t) =′ Au(t) + b(t)
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Example: Free fall under gravity
- Force 
- Second order differential equation: 

- First order system 

- Linear system 

- Exact solution known: 

Note: variables are vectors - matrix can be expressed by block, or per components.
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Example: 1D spring (/Harmonic oscillator)
- Force ,  spring stiffness,  rest length
- Second order differential equation: 

- First order system 

- Linear system 

- Exact solution known: 

, , 
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Example: 3D mass spring
- Force ,  spring stiffness,  rest length

- Second order differential equation: 

- First order system 

- Not linear
- No simple explicit solution
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Existence of solution
Solving the physical system = Solving the Initial Value Problem (IVP)

- Find the solution of , 
- With initial condition 

Cauchy-Lipschitz (/Picard-Lindelof) theorem states that
If  is Lipschitz with respect to  and continuous with respect to 
Then there exists a unique solution .

The solution is called the integral curve of the IVP.
-  can be seen as a vector field

(Vector field in 6D for )
- Solution is a path along this vector field passing by 
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Solving the ODE exactly
Equation is linear

Homogeneous, constant coefficients
, 

Non-Homogeneous, constant coefficients
, 

Homogeneous, variable coefficients
, 

 No closed-form solution in the general case

- Rem. Unfortunately, in general,  is not 
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u (t) =′ Au(t) u(0) = u ​0

⇒ u(t) = u ​ exp(A t)0

u (t) =′ Au(t) + b(t) u(0) = u ​0

⇒ u(t) = u ​ exp(A t) +0 exp A t ​ b(t ) exp −A t dt( ) ∫
t =0′

t
′ ( ′) ′

u (t) =′ A(t)u(t) u(0) = u ​0

⇒

u(t) u ​ exp ​ A(t ) dt0 (∫
0

t
′ ′)

Equation is non linear
No general method

 Numerical approaches are required most of the time⇒
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Numerical solution
1st order Explicit Euler
Naive numerical scheme: Approximation of the derivative

In the linear case

Pro : very easy to implement

Is  a good approximation of the true solution  ?
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Explicit Euler - study case
Free fall under gravity

- True solution 

- Numerical scheme: 

- Numerical solution: 

 Not exact : Error 
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red: true solution
blue: numerical solution
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Explicit Euler - study case
1D spring

- True solution: permanent oscillation

- Numerical scheme: 

 

red: true solution
red: numerical solution

 

- Numerical solution diverge to 
- Worse than bad accuracy for Graphics
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Explicit Euler - study case
1D spring: Analysis of the system energy

- Energy 

, 

 gain of energy
 divergence
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Accuracy of a numerical method - general definition
- Define the local truncation error :

Error accumulated during one step, assuming perfect knowledge of the true solution
, assuming 

- A numerical scheme is said to be accurate of order , if its local truncation error is in .

Explicit Euler is of order , at every step we add an error in .
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τ
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Stability of a numerical method - general definition
- Classical stability of a method studied on , .

- The true solution  converge if .
- For linear system,  refers to eigenvalues of .
- For non linear system,  refers to eigenvalues of the Jacobian of 

- A numerical method is unconditionnaly stable if 
 stable discrete solution.

- Otherwise, it is conditionnally stable/unstable.
- Region of stability:

Set of conditions on  such that the discrete solution doesn't diverge.

Rem.

- A numerical solution can diverge even when the true ODE solution converge when using unstable numerical method.
- Converseley, a numerical solution can converge even when the true ODE solution diverge when using stable numerical method.
- Stability  Accuracy.
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u (t) =′ λu(t) λ ∈ C
(t) =u~ exp(λ t) R ​(λ) ≤e 0
λ A

λ F

R ​(λ) ≤e 0
⇒

λ

! =

- true solution diverge
- numerical solution diverge

- true solution diverge
- numerical solution converge

(Not catastrophic in graphics)

- true solution converge
- numerical solution converge

- true solution converge
- numerical solution diverge

(Catastrophic in graphics)
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Stability analysis of explicit Euler

 using explicit Euler

 Stable if  (conditionnal stability)

: Interior of a disc centered on  with radius 

Rem. For 1D elastic spring

 
 Explicit euler is always unstable on the elastic spring problem.
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Other approach: Implicit method
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Other approach: Implicit Euler
Explicit Euler

 is known to compute 

- In the linear case

 Implicit Euler

 appears in RHS
 Need to solve 

- In the linear case : solve a linear system
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u =k+1 u +k hF(u , t )k k

uk uk+1

u =k+1 (I + hA)u +k h b(t )k

u =k+1 u +k hF(u , t )k+1 k+1
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⇒ u −k+1 hF(u , t ) =k+1 k+1 uk

u =k+1 u +k h Au + b(t )( k+1 k+1 )
⇒ u =k+1 (I − hA) u + h b(t )−1 ( k k+1 )
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Implicit Euler - study case
Free fall under gravity

- True solution 

- Numerical scheme: 

- Numerical solution: 

 Not exact : Error 

Same error magnitude than explicit Euler
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- red: True solution
- magenta: Implicit Euler
- blue: Explicit Euler
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Implicit Euler - study case
1D spring

- True solution: permanent oscillations

- Numerical scheme: 

Eigenvalues of  are 

  always converge

Even if the true solution oscillates
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Stability analysis of Implicit Euler
What are the general conditions for which  converge using Implicit Euler ?

Stability condition: 

: exterior of a disc centered on  with radius 
 Fully enclose 
 Implicit euler is unconditionally stable

Rem. May converges even when the true solution does not.
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Comparison Explicit Euler / Implicit Euler
Explicit Euler

- 
- 
- Accuracy: 1st Order
- Stability:

Conditional 
Solution to spring model diverges

Implicit Euler
- 
- 
- Accuracy: 1st Order
- Stability:

Unconditionnaly stable
Solution to spring model converge to 
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Higher order methods
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Higher order method - RK
Higher accuracy can be achived using Taylor expansion.

ex. 

- Second order accurate: 2nd order explicit Euler

- Higher order can achieve arbitrary accuracy.
- In practice: computing derivatives of  is complex.

 Not often used in practice

Instead: Runge Kutta
- Reach higher order accuracy
- Only involve the knowledge of , without its derivatives
- Involves several successives evaluations of 
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Runge-Kutta methods
RK2

Midpoint method

RK2 and Midpoint are 2nd order accurate, still not
stable for harmonic oscillator.

RK4 (Classical Runge-Kutta)

4th order, conditionally stable
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RK4 - Case study
- Rk4 conditionally stable for oscillating spring

Not permanent oscillations: Slight decrease of magnitude through time

- Large improvement of accuracy compared to implicit
Euler

Stability region: 

In the case of oscillating spring: 

Stable if 
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Introduction to symplectic methods
Standard approaches trade-off

- Explicit methods: (+) Simple to compute, (-) limited stability
- Implicit methods: (-) Hard to compute (especially on non linear functions), (+) very stable
- Oscillatory systems are not easy to model

(-) Numerical solution either diverge or converge.

Symplectic approach
- Remark: Mechanical systems have position and velocity variables

- Derivative of position is linear w/r velocity
- Derivative of velocity is more complex (forces - non linear)
 General idea: separate treatment of velocity and position

Semi-implicit:
- Implicit scheme for position  (linear part)
- Explicit scheme for velocity  (non linear part)
 In practice: use velocity  to evaluate .

Pro
(+) As simple as explicit method to implement
(+) Improved stability
(+) Well adapted to oscillatory systems
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Semi implicit method
Simplest semi-implicit method: Semi-implicit Euler / Verlet

General case

Application to classical mechanical cases

(+) Trivially easy to convert explicit Euler to semi-implicit
Euler

Expressed using positions only

1st order accurate (like explicit/implicit Euler) in position and speed.
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Stability on oscillatory system
1D spring system: 

Stable and permanent oscillation when 

Q. How can we demonstrate it ?

Note:  only valid for one 1D spring. Coupled 3D springs may require smaller value of h.
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Use of semi-implicit
Ex. Elastic Spring: 

Explicit Euler
for(int k=0; k<N; ++k) {
    p = p + h*v;
    v = v + h * F/m;
}

(-) Always diverges for elastic problem

Semi-Implicit Euler
for(int k=0; k<N; ++k) {
    v = v + h * F/m;
    p = p + h*v;
}

(+) Permanent oscillation for sufficiently small .

 Extremly simple change !
Big gain in stability
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Higher order symplectic
2nd order Velocity Verlet

- Remains stable with permanent oscillation for 

- Still simple to implement

Example for 1D elastic spring
for(int k=0; k<N; ++k) {
    v = v + h/2 * (-K/m*p);
    p = p + h*v;
    v = v + h/2 * (-K/m*p);
}
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Comparison between approaches
Small 

True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 - best behavior (undistinguishable from true solution)
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h = 0.2/ω
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Comparison between approaches
Larger 

Temporal evolution of Temporal evolution of energy 

True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 loose energy and  converge toward 
- Symplectic integrator keep oscillating
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Summary and extensions
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Numerical integration of ODE
General formulation: , .

Explicit Euler

(+) Easy to implement
(-) Worst scheme in all cases (divergence, low
accuracy)

Explicit Runge-Kutta

(+) Good accuracy
(+) Efficient to apply
(+/-) Stability OK for non-stiff problem, diverge on
stiff problem
(-) Artificial damping for constant energy system

 

Implicit methods

(+) Good to deal with stiff problem - very stable
(-) Add numerical damping (converge even if solution
oscillates)
(-) Hard/computationally costly to apply on non
linear problem

Symplectic integrator

(+) Handle well constant energy system, preserves
energy (Hamiltonian systems)
(+) Simple and efficient to implement
(-) Less accurate than RK
(-) Diverge on stiff problem
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Position based dynamics (PBD)
PBD - Use symplectic integrator expressed using position only

- Velocity is computed implicitly as 
- Handle constraints using explicit projection of positions.

- Interesting to handle non-linear/stiff constraints

PBD algorithm
For all k
    Integrate position (without constraints) p[k+1]=integrator(p[k],v[k],t)
    For all constraints
        Project p[k+1] on constraints
    Compute new speed v[k+1]=(p[k+1]-p[k])/h

(+) Unconditionnaly stable even for stiff constraints
(+) Simple to implement
(-) Low accuracy, no energy preserving
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(p −k+1 p )/hk

Very popular in Computer Graphics
[ M. Muller et al. Position Based Dynamics. VRIPHYS 2006 ]

Extensions: XPBD, Projective dynamics, ...
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