
C++ Programming
Applications to Computer Graphics

[CSC-43043-EP]

2026

Damien ROHMER - damien.rohmer@polytechnique.edu

Contents
1 Introduction to C++ 2

1.1 Preface . 2
1.2 First C++ program . 4
1.3 Declaration of variables . 5
1.4 Formatted output and input with printf, scanf . 7
1.5 Contiguous-element containers, arrays . 8
1.6 Conditionals and loops . 10
1.7 Associative containers : std::map . 12
1.8 Variable lifetimes . 13
1.9 Functions . 14
1.10 Passing arguments: copy, reference . 16
1.11 Classes . 18
1.12 External file I/O . 21
1.13 Code file organization . 22
1.14 Compilation . 24

2 Fundamental Types, Encoding 27
2.1 Integer Encoding . 27
2.2 Encoding of Floating-Point Numbers . 28
2.3 Notion of Endianness . 29
2.4 Summary of fundamental types . 29
2.5 Getting the size with sizeof . 30
2.6 Important notes . 30
2.7 Fixed-size types . 30
2.8 Bitwise operations . 31
2.9 Summary . 32

3 Pointers 33
3.1 Concept of storage and memory addressing . 33
3.2 Address of a variable . 34
3.3 Passing arguments . 35
3.4 Case of contiguous arrays . 37
3.5 Contiguity in classes and structs . 40
3.6 Memory Organization AoS vs SoA . 42
3.7 Memory allocation and deallocation . 43
3.8 The generic pointer void* . 46
3.9 Dynamic Allocation . 52

4 Classes 58
4.1 Introduction . 58
4.2 Initialization, Constructors . 60
4.3 Operators . 62
4.4 Inheritance . 64
4.5 Access control: const . 70
4.6 Keyword: static . 71
4.7 Access management: the static keyword in classes . 71

5 Threads and Parallelism 75
5.1 Concept of a thread . 75
5.2 Creating a thread in C++ . 75
5.3 Example of parallel execution . 75
5.4 Passing arguments to threads . 76
5.5 Multiple threads and real parallelism . 77
5.6 Shared memory . 77
5.7 Synchronization and critical sections . 77

1

5.8 Atomic variables . 77

6 Generic Programming, Template 79
6.1 General Principle of Templates . 79
6.2 Compilation principles: static duck typing, instantiation, and header files 81
6.3 Static metaprogramming . 83
6.4 Type deduction in templates . 85
6.5 Template specialization . 87
6.6 Priority between specialization and overloading . 91
6.7 Aliases . 93

7 Hardware view 96
7.1 Transistor principle . 96
7.2 Basic structure of memory and arithmetic operations . 99
7.3 Minimal organization: storing a bit . 99
7.4 Cache memory concept . 103

8 Development Methodologies and Best Practices 105
8.1 Code Quality: Concrete Objectives . 105
8.2 General Principles: KISS, DRY, YAGNI . 105
8.3 Invariants, assertions et contrat de fonction . 107
8.4 Tests and Test-Driven Development (TDD) . 111
8.5 Guided example: unit tests for clamp . 113
8.6 Test-Driven Development (TDD) . 114
8.7 TDD Example: Normalization of a 3D vector . 114
8.8 Error handling: principles and methodology . 117
8.9 Best practices for API design . 120

2

1 Introduction to C++
1.1 Preface
The C++ language, created in the early 1980s by researcher Bjarne Stroustrup at Bell Labs, is introduced initially
as an extension of the C language with which it is intrinsically linked. The C language is a so-called “low-level”
language, being close to the hardware (processor, memory) and particularly suited for coding efficient applications
related to the operating system. C++ was introduced to preserve the possibilities of the C language, while extending
it with mechanisms for structuring and abstraction for the description of large-scale software.

C++ distinguishes itself from other programming languages by its unique ability to combine low-level perfor-
mance with high-level abstraction. Direct heir to C, it allows precise control of memory and hardware, indispens-
able in domains where efficiency is critical (embedded systems, scientific computing, game engines, etc.). Unlike
languages such as Python or Java, which rely on a virtual machine or an interpreter that adds an indirection step
during execution, C++ is a compiled language that produces optimized machine code directly read and executed
by the processor, thus guaranteeing very fast execution.

Another major specificity of C++ is its simultaneous support for several programming paradigms, called pro-
gramming paradigms: - Procedural, inherited from C, for a classic approach based on functions and control struc-
tures. -Object-oriented, introduced with classes, encapsulation, inheritance, and polymorphism, facilitating mod-
ular design of complex software. - Generic, thanks to templates, which allow writing reusable code independent
of types. - Functional, increasingly present since C++11 with the lambdas and the algorithms of the standard
library.

This mix of paradigms makes C++ today a language recognized as extremely flexible, capable of adapting to
a wide variety of contexts. It remains essential for domains where performance and fine control of memory are
crucial, such as game engines, embedded software, numerical simulation, high-performance computing, or finance.

Evolutions of C++
The C++ language continues to evolve with regular updates

• C++98 and C++03 standardized the language and its standard libraries.

• C++11, called “Modern C++”, marked an important turning point with, notably, the introduction of range-
based loops, easier initialization of structures, the auto keyword, smart pointers, and lambda functions.

• C++14 andC++17 enriched the syntax and the standard library (structured bindings, filesystem, parallelism).

• C++20 introduced the concepts, coroutines, and ranges.

• C++23 continues this modernization, refining the libraries and simplifying the use of the language.

Why use C++?
C++ is currently one of the indispensable languages when it comes to designing applications with stringent perfor-
mance, real-time, or compute-intensive requirements.

Application domains

• Scientific and real-time applications: physical simulations, numerical computations, embedded systems.

• Game engines (Game Engines): Unity, Unreal Engine, Godot, as well as practically all AAA games heavily
use C++.

• 2D/3D software: Maya, Blender, Photoshop, Premiere Pro, Catia, SolidWorks rely largely on C++.

• Parallel computing and GPUs: CUDA (NVIDIA) is based on C++.

3

• Deep Learning and Vision frameworks: PyTorch, TensorFlow, OpenCV rely on C++ cores to optimize
performance.

• Operating systems: Windows is written largely in C and C++.

• Web and massive-scale services: browsers (Chrome, Firefox) and critical infrastructures (AWS, Facebook,
etc.) use C++ for the core performance-critical parts.

Strengths (+)

• Performance: direct compilation to native machine code, allowing very fine-grained optimizations.

• Robustness: a mature language, used and tested at very large scales.

• High and low level: rare combination that allows both writing near-hardware code and using modern high-
level abstractions.

• Specificity: this duality is present only in C++ (and more recently Rust).

• Freedom of programming: support for multiple paradigms (procedural, object-oriented, generic, func-
tional).

• C compatibility: ability to reuse the vast C ecosystem.

Weaknesses (−)

• Complexity: the language’s richness and the multiplicity of paradigms can be hard to master.

• Memory management: manual memory management is a major source of complexity and programming
errors.

• Build chain: compilation is heavier and sometimes slower than in other modern languages.

Quick comparison with other languages
• C++ vs Java
Both are object-oriented, but their philosophy differs.

– C++ is compiled to native machine code, which makes it very performant and suitable for systems
where every computation cycle counts.

– Java runs on a virtual machine (JVM), which facilitates portability but adds a layer of abstraction.

• Java manages memory automatically via a garbage collector, while C++ gives the programmer fine-grained
control over allocation and deallocation.

• C++ vs Python
Python is renowned for its writing simplicity and development speed, but remains an interpreted language,
thus much slower in execution.

– C++ requires more rigor and syntax, but enables achieving maximum performance.

– In practice, Python is often used for prototyping, scripting and data analysis, while C++ is favored for
performance-critical parts (3D engines, scientific computing, simulations).

– The two languages are sometimes used together: Python as a high-level layer, C++ for compute mod-
ules.

4

• C++ vs Rust
Rust is a newer language (2010), designed to offer the same efficiency as C++ but with safer memory man-
agement.

– Rust eliminates any possibility of memory leaks or illegal memory access thanks to its system of bor-
rowing and ownership.

– C++ offers more flexibility and has a huge existing software ecosystem, but at the cost of the rigor
needed to avoid mistakes and security vulnerabilities.

– Rust is seen as a modern and secure alternative, but C++ remains today largely dominant in industry
and in the available libraries.

1.2 First C++ program
We consider the following C++ program:

// standard library for input/output
#include <iostream>

int main() {
// display a message on the command line
std::cout << "Hello, world!" << std::endl;

// end of program
return 0;

}

Line-by-line explanations
1. #include <iostream>

• This directive tells the compiler to include the standard library iostream, which allows using input and
output streams (std::cin, std::cout, etc.).

2. int main()

• This is the main function of the program.

• Every C++ program must have a main function.

• Its execution always starts here.

• The word int indicates that the main function returns an integer to the operating system (0 on success,
another value on error).

3. std::cout << "Hello, world!" << std::endl;

• std::cout is the standard output stream (usually the screen).

• The << operator sends data into the stream.

• "Hello, world!" is a string.

• std::endl inserts a newline and forces immediate output.

4. return 0;

• Indicates that the program terminated successfully.

• The returned value is passed to the system.

Note: Each statement ends with a semicolon “;” in C++. Indentation and line breaks are optional; they are
useful for readability but do not change the program’s structure.

5

First compilation (on Linux/macOS)
To transform the C++ source file (for example hello.cpp) into an executable, we use a C++ compiler. On Linux or
macOS, the most common compilers are:

• g++ (GNU C++ Compiler, derived from GCC)
• clang++ (C++ compiler developed as part of the LLVM project)

Suppose the file is named hello.cpp. Type on the command line in the directory containing the file hello.cpp

g++ hello.cpp -o hello

• g++: runs the C++ compiler.
• hello.cpp: source file to compile.
• -o hello: option that indicates the name of the produced executable (hello).

The execution of the program is performed with the command

./hello

Which should display the following result

Hello, world!

1.3 Declaration of variables
In C++, a variable is a memory area that contains a value and is identified by a name.
Each variable has a type that defines the nature of the values it can contain (integers, floating-point numbers, text,
etc.).

Simple example

#include <iostream>
#include <string>

int main() {
int age = 20; // integer
float taille = 1.75f; // floating-point number (single precision)
double pi = 3.14159; // floating-point number (double precision)
std::string nom = "Alice"; // string

std::cout << "Nom : " << nom << std::endl;
std::cout << "Age : " << age << std::endl;
std::cout << "Taille : " << taille << " m" << std::endl;
std::cout << "Valeur de pi : " << pi << std::endl;

return 0;
}

Fundamental types
You will mainly use two fundamental types in your code:

• int : integer. On our machines, an int is encoded on 4 bytes.

int entier = 325;

• float : floating-point number, known as “single precision”. Encoded on 4 bytes.

float reel = 3.2f;

6

You will also encounter the following types:

• bool : boolean value (true or false). Introduced by C++ (absent from C), it makes the code more readable
than an integer.

bool estEtudiant = true;

• double : floating-point number with “double precision”, encoded on 8 bytes.

double pi = 3.14159;

By default, a decimal number without a suffix is interpreted as a double.
> In our context, we will more often use floats to stay compatible with the graphics card.

• char : character (1 byte). The mapping between values and characters is given by the ASCII table.

char initiale = 'A';

A char can also be used to manipulate memory directly at the byte level.

Important notes
1. Integer division vs floating-point division

When dividing two integers, the result is truncated (integer division):
“‘cpp

int a = 5 / 2; // equals 2
int b = 5 % 2; // equals 1 (remainder of the division)

To obtain a decimal result, at least one of the operands must be floating-point:

float c = 5 / 2.0f; // 2.5
float d = 5.0f / 2; // 2.5
float e = float(5) / 2; // 2.5

2. The keyword auto

It allows the compiler to automatically deduce the type:

auto a = 5; // int
auto b = 8.4f; // float
auto c = 4.2; // double

[Caution] For simple types, it is preferable to explicitly specify the type for better readability.
auto is mainly useful for generic functions or complex types.

3. Uninitialized variables
In C++, built-in variables are not initialized by default.

int a; // contains an undefined value

� To avoid indeterminate behaviors, it is advisable to always initialize your variables:

int a = 0;

7

Declaration without initialization (example)

int compteur; // uninitialized
compteur = 10; // assignment of a value later

[Attention]: an uninitialized variable contains an undefined value and must not be used before assignment.

Constant variables (const)
In C++, a variable can be declared constant using the keyword const. Such a variable must be initialized at the
moment of its declaration and cannot be modified afterwards.

const int joursParSemaine = 7;
const float pi = 3.14159f;

int main() {
std::cout << "Pi = " << pi << std::endl;
// pi = 3.14; // ERROR: cannot modify a constant
return 0;

}

Why this matters

• Guarantees that the value will not be accidentally modified in the code.
• Makes the program more readable and safer.
• May allow the compiler to optimize certain expressions.

1.4 Formatted output and input with printf, scanf
printf and scanf (C heritage)

In addition to std::cout and std::cin, C++ keeps the classic C language functions:

• printf (print formatted) : for formatted output.
• scanf (scan formatted) : for formatted input.

They are defined in the header <cstdio> (or <stdio.h> in C). Their usage relies on format specifiers (%d, %f, %s,
etc.) which indicate the type of the variable.

Example of formatted output with printf
#include <cstdio>

int main() {
int age = 20;
float taille = 1.75f;

printf("Age: %d years, height: %.2f m\n", age, taille);
return 0;

}

Output :

Age: 20 years, height: 1.75 m

• %d : integer (int)
• %f : floating point (float or double)
• %.2f : floating point displayed with two decimals

8

Example of reading with scanf
#include <cstdio>

int main() {
int age;
printf("Enter your age: ");

scanf("%d", &age); // & = memory address
printf("You are %d years old.\n", age);
return 0;
}

In scanf, it is necessary to provide the address of the variable (here &age), because the function directly modifies
its value.

Perfect � Here is a concise recap table of the main formats usable with printf and scanf, written in LaTeX-
friendly style (no non-representable special characters).

Main format specifiers (printf / scanf)

Specifier Expected type Example usage Displayed result

%d signed integer (int) printf("%d", 42); 42

%u unsigned integer (unsigned) printf("%u", 42u); 42

%f floating-point (float or double) printf("%f", 3.14); 3.140000

%.nf floating-point with n decimals printf("%.2f", 3.14159); 3.14

%e floating-point in scientific notation printf("%e", 12345.0); 1.234500e+04

%c character (char) printf("%c", 'A'); A

%s string (char*) printf("%s", "Bonjour"); Bonjour

%x integer in hexadecimal (lowercase) printf("%x", 255); ff

%X integer in hexadecimal (uppercase) printf("%X", 255); FF

%p memory address (pointer) printf("%p", &a); 0x7ffee3c8a4

%% literal % character printf("%%d"); %d

1.5 Contiguous-element containers, arrays
In C++, the standard library (STL, Standard Template Library) defines several containers that can store sets
of values.
Among them, two structures are particularly important:

• std::array<T, N>: static array of fixed size.

– The elements are stored contiguously in memory.

– The size N must be known at compile time and cannot change.

– The data is stored on the stack memory: faster access, but limited in size (typically a few MB).

• std::vector<T>: dynamic array.

– The elements are also stored contiguously in memory.

– The size can be modified during runtime (adding/removing elements).

– The data is stored on the heap memory: slightly more costly to allocate, but allows access to all RAM.

• Classic C arrays (T var[N]) :

– Fixed size, known at compile time.

9

– No bounds checking.

– No utility methods (size(), push_back, etc.).

• Not widely used in modern C++, except to interact with C code or for very low-level needs.

Simple example with std::vector

#include <iostream>
#include <vector>

int main() {
// Creation of an empty vector of integers
std::vector<int> vec;

// Adding elements (automatic resizing)
vec.push_back(5);
vec.push_back(6);
vec.push_back(2);

// Size of the vector
std::cout << "The vector contains " << vec.size() << " elements" << std::endl;

// Accessing elements by index
std::cout << "First element: " << vec[0] << std::endl;

// Modification of an element
vec[1] = 12;

// Traversing the vector with a loop
for (int k = 0; k < vec.size(); ++k) {

std::cout << "Element " << k << " : " << vec[k] << std::endl;
}

return 0;
}

Access safety
[Warning]: accessing an element outside the bounds is an undefined behavior, which can cause the program to
crash.

// Incorrect usage: may cause an error or unpredictable behavior
// vec[8568] = 12;

// Safe access (bounds checking)
vec.at(0) = 42;

Resizing
A vector can be dynamically resized with the .resize(N) method:

vec.resize(10000);
// The old elements are preserved
// The new ones are initialized to 0

Comparison std::array, std::vector and C arrays

#include <array>
#include <vector>
#include <iostream>

int main() {

10

// Classic C array
int tab[5] = {1, 2, 3, 4, 5};

// std::array (static, fixed size)
std::array<int, 5> arr = {1, 2, 3, 4, 5};

// std::vector (dynamic, variable size)
std::vector<int> vec = {1, 2, 3};

std::cout << "Size of the tab : " << 5 << " (fixed, known at compile time)" << std::endl;
std::cout << "Size of the array : " << arr.size() << std::endl;
std::cout << "Size of the vector : " << vec.size() << std::endl;

vec.push_back(10); // possible
// arr.push_back(10); // impossible: fixed size
// tab.push_back(10); // impossible: function does not exist

return 0;
}

Summary
• C arrays (T var[N]): simple, but limited and not very safe.

• std::array<T, N>: static array, size fixed at compile time, stored on the stack.

• std::vector<T>: dynamic array, size modifiable, stored on the heap.

• All three store their elements contiguously in memory.

• In practice:

– Use std::array for small fixed sizes known in advance.

– Use std::vector for data whose size may vary during the program.

– Avoid C arrays except in special cases (interoperability with C code, low-level).

1.6 Conditionals and loops
if / else
General structure:

if (condition) {
// instructions if the condition is true

} else {

// instructions if the condition is false }

[Warning] The braces `{}` are **optional** if only a single statement is present:
```cpp
if (x > 0)

std::cout << "x is positive" << std::endl;

Example:

int age = 20;

if (age >= 18) {
std::cout << "You are an adult." << std::endl;

} else {
std::cout << "You are a minor." << std::endl;

}

11



if / else if / else
General structure:

if (condition1) {
// instructions

} else if (condition2) {
// instructions

} else {
// default instructions

}

Example:

int note = 15;

if (note >= 16)
std::cout << "Very good!" << std::endl;

else if (note >= 10)
std::cout << "Passing." << std::endl;

else
std::cout << "Fail." << std::endl;

The loops

The while loop

General structure:

while (condition) {
// repeated instructions as long as the condition is true

}

Example:

int i = 0;
while (i < 5) {

std::cout << "i = " << i << std::endl;
i++;

}

The do … while loop

General structure:

do {
// instructions executed at least once

} while (condition);

Example:

int i = 0;
do {

std::cout << "i = " << i << std::endl;
i++;

} while (i < 5);

The for loop

General structure:

12



for (initialization; continuation-condition; increment) {
// repeated instructions

}

Example:

for (int i = 0; i < 5; i++) {
std::cout << "i = " << i << std::endl;

}

The range-based for loop (C++11)

General structure:

for (type variable : container) {
// instructions using the variable

}

Example:

#include <vector>

int main() {
std::vector<int> values = {1, 2, 3, 4, 5};

for (int v : values)
std::cout << v << std::endl;

}

Extension : switch / case
The switch allows testing several values of the same integer or character variable.

General structure:

switch (variable) {
case value1:

// instructions
break;

case value2:
// instructions
break;

default:
// default instructions

}

[Warning] It only works with integer or character types.
The keyword break prevents executing the following blocks.

1.7 Associative containers : std::map
A std::map is an associative container from the standard library that stores key/value pairs sorted by key. Each key
is unique and allows efficient access to the corresponding value (lookup in O(log n)).

• Included: #include <map>

• Order: elements are sorted by their key (uses default operator<).
• Access: operator[] creates a default value if the key does not exist; find lets you test existence without
creating.

Simple example: counting word frequency

#include <iostream>
#include <map>

13



#include <string>

int main() {

```cpp
std::map<std::string, int> counts;

// Insertion / increment
counts["pomme"] = 5;
counts["banane"] = 4;
counts["avocat"] = 8;
counts["pomme"]++;

// Traversal and display
for (auto pair : counts) {

std::cout << pair.first << " : " << pair.second << std::endl;
}
// Prints:
// avocat : 8
// banane : 4
// pomme : 6

// Lookup without creation
auto it = counts.find("orange");
if (it == counts.end())

std::cout << "orange non trouvé" << std::endl;

// Deletion
counts.erase("banane");

return 0;
}

Notes:

• Use operator[] to insert/access quickly. An entry is automatically created if the key is absent.
• To test existence without creating, use find.

1.8 Variable lifetimes
In C++, the lifetime (or scope) of a variable is determined by the block of statements in which it is declared.
A block is defined by curly braces { ... }.
The variable exists from its declaration until the closing brace } of the block.

Example 1: variable local to a block

int main()
{

if (true) {
int x = 5; // x is defined in the "if" block
std::cout << x << std::endl;

}
// Here, x no longer exists: it is destroyed at the end of the block

}

Example 2: variable defined in an enclosing block

int main()
{

int x = 5; // x is defined in the block of the function main()
if (true) {

std::cout << x << std::endl; // x can be used in this sub-block
}
// x exists until the end of main()

}

14

Important notes
• This behavior is different from Python, where a variable defined in an if or a loop remains accessible until
the end of the function.

• It is forbidden to define multiple variables with the same name in a single block.
– This is possible in sub-blocks:

int x = 5;
{

int x = 10; // allowed but to be avoided, as it is hard to read
std::cout << x << std::endl; // prints 10

}
std::cout << x << std::endl; // prints 5

• Best practice: declare your variables in the block with the shortest possible lifetime.
This improves code readability and reduces the risk of errors.

1.9 Functions
In C++, a function is a reusable block of code that performs a particular task.
The general syntax is as follows:

typeRetour nomFonction(type nomArgument1, type nomArgument2, ...)
{

// corps de la fonction
return valeur;

}

Simple example

int addition(int a, int b)
{

return a + b;
}

• A function that does not return a value will have type void.

• A function that takes no arguments will simply have empty parentheses.

• The first line describing the function’s name and parameter types is called the function’s signature or header.

• The remainder is called the body or implementation of the function.

Declaration and Definition
In C++, it is necessary that the signature of a function be declared before its use. Otherwise, there will be a
compilation error.

Correct example (definition before use)

int addition(int a, int b)
{

return a + b;
}

int main()
{

int c = addition(5, 3); // OK
}

15

Correct example (declaration followed by definition)

int addition(int a, int b); // Declaration

int main()
{

int c = addition(5, 3); // OK
}

int addition(int a, int b) // Definition
{

return a + b;
}

Incorrect example

int main()
{

int c = addition(5, 3); // ERROR: addition has not been declared yet
}

int addition(int a, int b)
{

return a + b;
}

Example: function norm

Let’s write a function that calculates the Euclidean norm of a 3D vector with coordinates (x, y, z):

#include <iostream>
#include <cmath> // for std::sqrt

float norm(float x, float y, float z)
{

return std::sqrt(x*x + y*y + z*z);
}

int main()
{

std::cout << "Norm of (1,0,0) : " << norm(1.0f, 0.0f, 0.0f) << std::endl;
std::cout << "Norm of (0,3,4) : " << norm(0.0f, 3.0f, 4.0f) << std::endl;
std::cout << "Norm of (1,2,2) : " << norm(1.0f, 2.0f, 2.0f) << std::endl;

}

Expected output :

Norm of (1,0,0) : 1
Norm of (0,3,4) : 5
Norm of (1,2,2) : 3

Useful mathematical functions

• Square: float x2 = x * x;

• Square root: float y = std::sqrt(x);

• Power: float y = std::pow(x, p);

[Note] Do not use ^ nor ** in C++: these are not power operators.

Function Overloading
In C++, several functions can share the same name as long as their parameters differ. This is called the over-
loading.

16

Example

#include <iostream>
#include <cmath>

// Solves ax + b = 0
float solve(float a, float b) {

return -b / a;
}

// Solves ax^2 + bx + c = 0 (one root)
float solve(float a, float b, float c) {

float delta = b*b - 4*a*c;
return (-b + std::sqrt(delta)) / (2*a);

}

int main() {
float x = solve(1.0f, 2.0f); // Calls the 1st version
float y = solve(1.0f, 2.0f, 1.0f); // Calls the 2nd version

std::cout << "Linear solution : " << x << std::endl;
std::cout << "Quadratic solution : " << y << std::endl;

}

Summary
• A function has a signature (header) and a body (implementation).
• It must be declared before use.
• Functions can return a value (return) or be void.
• The overloaded functions allow using the same name with different parameters.

1.10 Passing arguments: copy, reference
In C++, function arguments are passed by copy by default:
- The modifications made inside the function stay local.

• For large objects (vectors, arrays, structures), copying can be costly in terms of performance.

Example with pass-by-copy

#include <iostream>

void increment(int a) {
a = a + 1;

}

int main() {
int x = 3;
increment(x);
std::cout << x << std::endl; // prints 3 (x is not modified)

}

Here, the variable x is not modified in main because increment works on a copy.

Pass by reference
We can use the symbol & in the signature to pass an argument by reference.
This allows directly modifying the original variable :

#include <iostream>

void increment(int& a) {
a = a + 1;

17

}

int main() {
int x = 3;
increment(x);
std::cout << x << std::endl; // prints 4 (x is modified)

}

A reference is an alias: the function accesses the original variable and not a copy.

Example with std::vector

Consider a function that multiplies the values of a vector :

#include <iostream>
#include <vector>

std::vector<float> generate_vector(int N)
{

std::vector<float> values(N);
for (int k = 0; k < N; ++k)

values[k] = k / (N - 1.0f);
return values;

}

void multiply_values(std::vector<float> vec, float s)
{

for (int k = 0; k < vec.size(); ++k) {
vec[k] = s * vec[k];

}
std::cout << "Last value in the function: " << vec.back() << std::endl;

}

int main()
{

int N = 101;
std::vector<float> vec = generate_vector(N);

multiply_values(vec, 2.0f);

std::cout << "Last value in main: " << vec.back() << std::endl;
}

Expected output :

Last value in the function: 2
Last value in the main: 1

Here, vec is passed by copy to multiply_values.
The modification is made on a local copy, so vec in main remains unchanged.

Pass by reference (correction)
Let’s modify the signature to pass the vector by reference :

void multiply_values(std::vector<float>& vec, float s)
{

for (int k = 0; k < vec.size(); ++k) {
vec[k] = s * vec[k];

}
std::cout << "Last value in the function: " << vec.back() << std::endl;

}

Expected result :

Last value in the function: 2
Last value in the main: 2

18

Constant references
If we want to avoid copying without modifying the vector, we can use a constant reference :

float sum(std::vector<float> const& T) {
float value = 0.0f;
for (int k = 0; k < T.size(); k++)

value += T[k];
return value;

}

This type of passing allows :
1. To avoid copying the data.
2. To ensure that the values will not be modified in the function.

Best practice: use const references for large objects that should not be modified.

1.11 Classes
In C++, a class (or a struct) is a way to group in a single entity :

• of attributes (data members),

• and of methods (member functions) that operate on these data.

We then speak of an object to designate an instance of the class.

Declaration and use of a simple object

#include <iostream>
#include <cmath>

// Déclaration ’dune structure
struct vec3 {

float x, y, z;
};

int main()
{

// Création ’dun vec3 non initialisé
vec3 p1;

// Création et initialisation ’dun vec3
vec3 p2 = {1.0f, 2.0f, 5.0f};

// Accès et modification des attributs
p2.y = -4.0f;

std::cout << p2.x << "," << p2.y << "," << p2.z << std::endl;

return 0;
}

Struct vs Class
In C++, objects can be defined with the keyword struct or class :

struct vec3 {
float x, y, z; // Par défaut : public

};

class vec3 {
public:

float x, y, z; // Doit être indiqué explicitement
};

19

Main difference :

• In a struct, the members are public by default.
• In a class, the members are private by default.

In practice :

• We often use struct for simple objects that aggregate public data.
• We prefer class when we want to encapsulate private data with access methods.

Methods (member functions)
A class can define methods, i.e., functions that manipulate directly its attributes.

#include <iostream>
#include <cmath>

struct vec3 {
float x, y, z;

float norm() const; // method that does not modify the object
void display() const; // same
void normalize(); // method that modifies (x,y,z)

};

// Implementation of the methods
float vec3::norm() const {

return std::sqrt(x * x + y * y + z * z);
}

void vec3::normalize() {
float n = norm();
x /= n;
y /= n;
z /= n;

}

void vec3::display() const {
std::cout << "(" << x << "," << y << "," << z << ")" << std::endl;

}

int main()
{

vec3 p2 = {1.0f, 2.0f, 5.0f};

// Norm
std::cout << p2.norm() << std::endl;

// Normalization
p2.normalize();

// Display
p2.display();

return 0;
}

Remarks

• Methods can access directly the object’s attributes without using this->, although it is possible.
• We generally separate thedeclaration (in the struct/class) and the implementation (with ClassName::MethodName).
• The keyword const placed after a method indicates that it does not modify the object. This improves robust-
ness and readability.

Constructors and destructor
A class can define constructors to initialize its objects and a destructor to run code when they are destroyed.

20

#include <iostream>
#include <cmath>

struct vec3 {
float x, y, z;

// Empty constructor
vec3();

// Custom constructor
vec3(float v);

// Destructor
~vec3();

};

// Initialization to 0
vec3::vec3() : x(0.0f), y(0.0f), z(0.0f) { }

// Initialisation avec une valeur commune
vec3::vec3(float v) : x(v), y(v), z(v) { }

// Destructeur
vec3::~vec3() {

std::cout << "Goodbye vec3" << std::endl;
}

int main() {
vec3 a; // appelle vec3()
vec3 b(1.0f); // appelle vec3(float)

return 0; // appelle ~vec3()
}

Default constructor or destructor (= default)

In some cases, we do not want to redefine a constructor or a destructor, but simply explicitly tell the compiler
to generate the default implementation. We then use the syntax = default.

struct vec3 {
float x, y, z;

// Génère automatiquement un constructeur par défaut
vec3() = default;

// Génère automatiquement un destructeur par défaut
~vec3() = default;

};

This is equivalent to writing nothing, but has two advantages:

• Readability: this makes explicit that a constructor or destructor exists and should be the one provided by the
compiler.

• Robustness: helps avoid certain implicit suppressions of constructors/destructors if others are defined in the
class.

Member functions vs non-member functions
In C++, the choice between a method (member function) and an external function is left to the developer. For
example, the standard can also be defined as an independent function:

#include <cmath>

struct vec3 {
float x, y, z;

21

};

// Norm as a non-member function
float norm(const vec3& p) {

return std::sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
}

int main() {
vec3 p = {1.0f, 2.0f, 3.0f};
float n = norm(p); // call as a function

}

Using const& avoids unnecessary copying of the object.

1.12 External file I/O
In C++, the library <fstream> allows you to write and read data to and from files. It provides three main classes:

• std::ifstream (input file stream) : for reading a file (input).
• std::ofstream (output file stream) : for writing to a file (output).
• std::fstream : for combining reading and writing.

Example: writing a vec3 to a file
We want to save the coordinates of a vec3 to a text file.

#include <iostream>
#include <fstream>
#include <cmath>

struct vec3 {
float x, y, z;

};

int main() {
vec3 p = {1.0f, 2.0f, 3.5f};

std::ofstream file("vec3.txt"); // ouverture en écriture
if (!file.is_open()) {

std::cerr << "Erreur : impossible ’douvrir le fichier !" << std::endl;
return 1;

}

file << "Bonjour C++ !" << std::endl;
file << p.x << " " << p.y << " " << p.z << std::endl;
file.close(); // fermeture du fichier

return 0;
}

After execution, the file vec3.txt contains:

Bonjour C++ !
1 2 3.5

Example: reading a vec3 from a file
We can then read this vec3 back from the file:

#include <iostream>

#include #include
struct vec3 { float x, y, z; };
int main() { vec3 p;

22

std::ifstream file("vec3.txt"); // ouverture en lecture
if (!file) {

std::cerr << "Erreur : fichier introuvable !" << std::endl;
return 1;

}

std::string line;
std::getline(file, line);
file >> p.x >> p.y >> p.z; // lecture des trois valeurs
file.close();

std::cout << "vec3 relu : (" << p.x << ", " << p.y << ", " << p.z << ")" << std::endl;
return 0;

}

Expected output:

vec3 relu : (1, 2, 3.5)

Opening modes

When opening a file, you can specify modes:

* `std::ios::in` : read (default for `ifstream`).
* `std::ios::out` : write (default for `ofstream`).
* `std::ios::app` : append to the end of the file without erasing it.
* `std::ios::binary` : read/write in binary mode (e.g., images).

Example:

```cpp
std::ofstream file("log.txt", std::ios::app); // ouverture en ajout
file << "Nouvelle entrée" << std::endl;

1.13 Code file organization
When a program becomes large, it is necessary to split the code into several files in order to preserve readability,
modularity and simplify maintenance.

A typical organization with C++ classes relies on three types of files:

1. Header file (.hpp or .h)

• Contains the declarations of classes, structures and functions.
• Serves as the public interface: what other files must know to use the class.

2. Implementation file (.cpp)

• Contains the code of the methods and functions declared in the .hpp.
• Performs the detailed implementation of the behaviors.

3. Main or usage file (main.cpp, etc.)

• Contains the main() function and uses the classes/functions by including the header file.

Example: organization with a vec3 class

Header file — vec3.hpp

23



#pragma once
#include <cmath>

// Déclaration de la classe
struct vec3 {

float x, y, z;

float norm() const;
void normalize();

};

// Fonction non-membre
float dot(vec3 const& a, vec3 const& b);

Implementation file — vec3.cpp

#include "vec3.hpp"

// Méthodes de vec3
float vec3::norm() const {

return std::sqrt(x*x + y*y + z*z);
}

void vec3::normalize() {
float n = norm();
x /= n; y /= n; z /= n;

}

// Fonction non-membre
float dot(vec3 const& a, vec3 const& b) {

return a.x*b.x + a.y*b.y + a.z*b.z;
}

Usage file — main.cpp

#include "vec3.hpp"
#include <iostream>

int main() {
vec3 v = {1.0f, 2.0f, 3.0f};

std::cout << "Norme : " << v.norm() << std::endl;

v.normalize();
std::cout << "Norme après normalisation : " << v.norm() << std::endl;

vec3 w = {2.0f, -1.0f, 0.0f};
std::cout << "Produit scalaire v.w = " << dot(v, w) << std::endl;

return 0;
}

Important notes
• The #include "vec3.hpp" copy-pastes the contents of the .hpp file at compile time.
• All the files that use vec3 must include its header file (vec3.hpp).
• Never include a .cpp file directly into another file.
• Shared declarations must always be in a single header file, included by all the concerned files.

24



About #pragma once

The #pragma once directive is used in headers to prevent multiple inclusions of the same file. When a .hpp file is
included multiple times (directly or indirectly), this can cause compilation errors related to redefinitions of classes
or functions.

With #pragma once, the compiler guarantees that the file’s content will be included only once, even if several
files try to include it.
It is a more concise and readable alternative to the classic include guards using #ifndef, #define and #endif.

In practice, it is recommended to always add #pragma once at the top of your header files.

1.14 Compilation
In C++, the compilation is the process that transforms human-readable source code ( .cpp and .hpp files) into an
executable program understandable by the computer. This transformation happens in several steps. The compiler
starts by analyzing the code and translating it into assembly code.

The assembly code is a low-level language that directly corresponds to the instructions understandable by the
processor. Unlike C++ which is portable across systems and processors, assembly is dependent on the hardware
architecture (Intel x86, ARM, etc.). Each line of C++ can thus yield one or more assembly instructions, such as
arithmetic operations, memory copy, or conditional jumps.

Then, this assembly code is converted into binary machine code which constitutes the processor’s native
language. This code is stored in a binary object file. Finally, a linker assembles the various object files and the
libraries used to produce the final executable.

Thus, the role of compilation is to translate a high-level language (C++) into low-level instructions (assem-
bly, then machine) that the processor can execute directly, while optimizing performance.

Simple diagram of the compilation pipeline

Source file (.cpp)
↓ (compiler)

Object file (.o)
↓ (linker)

Executable (binary program)

Diagram with multiple source files

main.cpp vec3.cpp utils.cpp
↓ ↓ ↓

(compiler) (compiler) (compiler)
↓ ↓ ↓

main.o vec3.o utils.o
↓ ↓ ↓

[linker]
↓

Executable program

### Example of assembly code

#### C++ Example

```cpp
int add(int a, int b) {

return a + b;
}

int main() {

25

int x = add(2, 3);
return x;

}

Generated assembly (x86-64, simplified)

add(int, int): # Start of function add
mov eax, edi # Copy the 1st argument (a) into eax
add eax, esi # Add the 2nd argument (b)
ret # Return eax (result)

main: # Start of function main
push rbp # Save base pointer
mov edi, 2 # Load 2 into the edi register (1st argument)
mov esi, 3 # Load 3 into the esi register (2nd argument)
call add(int, int) # Call the function add
pop rbp # Restore the base pointer
ret # Return the result in eax

Explanations

• edi and esi: registers used to pass the 1st and 2nd arguments to functions (x86-64 System V calling conven-
tion).

• eax: register where the result is stored and returned by the function.
• mov: copies a value into a register.
• add: performs an addition between two registers.
• ret: returns from the function, using the value present in eax as the result.

On Linux/macOS
On Linux and macOS, the most commonly used compilers are g++ (GNU) and clang++ (LLVM).
To compile a simple program (a single file):

g++ main.cpp -o programme

or

clang++ main.cpp -o programme

• main.cpp : C++ source file to compile.
• -o programme : name of the produced executable.

If the project contains multiple files, it becomes tedious to compile everything by hand. We then use aMakefile
with themake tool, which describes dependencies and the compilation rules.

Minimal Makefile example:
Here is your annotated Makefile with the general syntax shown in comments :

Default target (here: "main")
all: main
General syntax :
target: dependencies
command(s) to execute

Build of the executable "main"
main: main.o vec3.o

g++ main.o vec3.o -o main
General syntax :
executable: object_files
compiler object_files -o executable

Rule to generate the object main.o
main.o: main.cpp vec3.hpp

26

g++ -c main.cpp
General syntax :
file.o: file.cpp header.hpp
compiler -c file.cpp

Rule to generate the object vec3.o
vec3.o: vec3.cpp vec3.hpp

g++ -c vec3.cpp
General syntax :
file.o: file.cpp header.hpp
compiler -c file.cpp

Cleaning intermediate files
clean:

rm -f *.o main
General syntax :
clean:
command to remove generated files

Windows
On Windows, the compiler is provided directly byMicrosoft Visual Studio (MSVC).

It does not rely on make or on Makefiles. Instead, the code is organized into a Visual Studio project (.sln) that
describes the files, dependencies, and compilation options.

The Visual Studio IDE handles launching the MSVC compiler automatically when you press “Build” or “Run”.
Thus, it is not necessary (and not practical) to manually invoke cl.exe from the command line.

Meta-configuration via CMake
To avoid writing a Linux-specific Makefile and a Windows-specific Visual Studio project, we use CMake.

• CMake is a tool for project generation.

• It reads a configuration file (CMakeLists.txt) and automatically generates the files adapted to your system :

– Linux/MacOS→ aMakefile usable with make.
– Windows→ a Visual Studio project (.sln).

Example usage on Linux/MacOS:

From the project directory
mkdir build
cd build
cmake ..
make # on Linux/MacOS

In summary

• Linux/MacOS: compilation via g++ or clang++, automation viaMakefile.
• Windows: compilation via MSVC through a Visual Studio project.
• CMake: a cross-platform tool that automatically generates the right type of project (Makefile or .sln).

27

2 Fundamental Types, Encoding
In C++, variables are typed: each variable corresponds to amemory space (one ormore slots) interpreted according
to a type. Examples of fundamental types:

int a = 5; // signed integer (typically 4 bytes)
float b = 5.0f; // single-precision floating point (4 bytes)
double c = 5.0; // double-precision floating point (8 bytes)
char d = 'k'; // character (1 byte = 8 bits), equals 107 in ASCII
size_t e = 100; // unsigned integer for memory addressing (8 bytes on 64-bit machines)

Important notes:

• The size of types depends on the architecture and the compiler (except char guaranteed to be 1 byte).
• No type occupies less than one byte (8 bits).
• For efficiency reasons, memory is often aligned: some structures add padding (empty bytes) to align on 4
or 8-byte boundaries.

2.1 Integer Encoding
Binary Representation
An integer is represented in binary:

• Each bit is 0 or 1.
• A set of bits is grouped into bytes (8 bits).
• Values are interpreted in base 2.

Example:

Decimal Binary (8 bits)

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

156 10011100

An integer can be represented across several bytes:

• 4 bytes (int classic) = 32 bits → up to 2^32 possible values.
• 8 bytes (long long) = 64 bits → up to 2^64 possible values.

Unsigned Integers
An unsigned int on 4 bytes (32 bits) encodes values from 0 to 2^32 - 1 = 4 294 967 295.

Example in hexadecimal (practical representation of bytes):

• 00000000 → 0

• FFFFFFFF → 4294967295

Reminder:

• 1 byte (8 bits) = 2 hexadecimal characters
• E.g.: 10011100 = 9C in hexadecimal = 156 in decimal

28

Signed Integers and Two’s Complement
Signed integers use the leftmost bit (MSB) to encode the sign:

• 0 → positive
• 1 → negative

Encoding method: two’s complement.

• To obtain the negative value of an integer:

1. Invert all the bits.
2. Add 1.

Example on 8 bits:

00000101 = +5
Inverted → 11111010
Add +1 → 11111011 = -5

Consequence:

• On 8 bits, value range: from -128 to +127.
• On 32 bits (int): from -2 147 483 648 to +2 147 483 647.

Practical Example
Take the signed integer encoded on 2 bytes:

C4 8D (hexadecimal)
= 11000100 10001101 (binary)

• Interpreted as unsigned: 50317.

• Interpreted as signed two’s complement:

– Bit inversion → 00111011 01110010

– Add 1 → 00111011 01110011 = 15219

– Therefore the value = -15219.

2.2 Encoding of Floating-Point Numbers
Floating-point numbers (float, double) follow the IEEE 754 standard.

A floating-point number is represented by three parts:

1. Sign (1 bit)
2. Exponent (8 bits for float, 11 bits for double)
3. Mantissa (23 bits for float, 52 bits for double)

Formula:

x = (−1)s × (1 +mantissa)× 2exponent−bias

• float (32 bits) → bias = 127
• double (64 bits) → bias = 1023

Example: 46 3F CC 30 (float in hexadecimal) = 12275.046875 in decimal.
[Note] Important properties:

• The precision depends on the value: larger near 0, smaller for very large numbers.
• Some numbers are not exactly representable (e.g. 0.1, 0.4).
• Always compare two floating-point numbers with a tolerance ε:

if (std::abs(a - b) < 1e-6) { ... }

29

2.3 Notion of Endianness
When an integer occupies several bytes (for example a 4-byte int), the computer must decide in what order the
bytes are stored in memory. This is what we call endianness (or byte order).

Two main conventions
1. Little Endian (Intel x86, ARM in default mode)

• The least significant byte is stored first (at the smallest address).
• Example :

int a = 0x12345678;

Memory representation (increasing addresses) :

Address: 1000 1001 1002 1003
Content: 78 56 34 12

2. Big Endian (some network architectures, PowerPC, old processors)

• Themost significant byte is stored first.
• For the same value 0x12345678 :

Address: 1000 1001 1002 1003
Content: 12 34 56 78

Why is this important?
• Network compatibility Protocols (TCP/IP, etc.) require Big Endian (network byte order). Classic PCs (Intel)
use Little Endian: you must convert before sending or after receiving.

• Binary files If a program writes a binary file in Little Endian, it must specify that order. Otherwise, on a Big
Endian machine, the values read will be incorrect.

• Interoperability Any communication between heterogeneous machines must explicitly state the byte order.

2.4 Summary of fundamental types

Type Description Typical size (x86/64-bit) Example declaration

char ASCII character (or signed small
integer)

1 byte char c = 'A';

bool boolean value (true or false) 1 byte (vector-optimized) bool b = true;

short signed short integer 2 bytes short s = 123;

int | standard signed integer | 4 bytes | int a = 42; |
long | signed integer (size varies by architecture) | 4 bytes (Windows), 8 (Linux) | long l = 100000; |
long long | signed long integer (guaranteed to be at least 64 bits) | 8 bytes | long long x = 1e12; |
unsigned | unsigned integer (≥0 only) | same size as signed | unsigned u = 42; |
float | single-precision floating-point number (IEEE 754) | 4 bytes | float f = 3.14f; |
double | double-precision floating-point number | 8 bytes | double d = 2.718; |
long double | extended-precision floating-point (architecture-dependent) | 8, 12 or 16 bytes | long double pi = 3.14159;

|
size_t | unsigned integer for memory addressing | 8 bytes (64 bits) | size_t n = vec.size(); |
wchar_t | wide character (Unicode, platform-dependent) | 2 bytes (Windows), 4 (Linux) | wchar_t wc = 'é'; |

Attention: The size may vary depending on the compiler and architecture, except char which always has 1
byte.

30

2.5 Getting the size with sizeof
In C and C++, the operator sizeof returns the size in bytes of a type or a variable.

Examples :

#include <stdio.h>

int main() {
printf("sizeof(char) = %zu\n", sizeof(char));
printf("sizeof(int) = %zu\n", sizeof(int));
printf("sizeof(float) = %zu\n", sizeof(float));
printf("sizeof(double)= %zu\n", sizeof(double));

int a;
double b;
printf("sizeof(a) = %zu\n", sizeof(a));
printf("sizeof(b) = %zu\n", sizeof(b));
return 0;

}

Typical output on a 64-bit machine :

sizeof(char) = 1
sizeof(int) = 4
sizeof(float) = 4
sizeof(double)= 8
sizeof(a) = 4
sizeof(b) = 8

2.6 Important notes
• sizeof(type) is evaluated at compile time, without executing the program.
• The size of a type can change depending on the architecture (32-bit vs 64-bit).
• Memory alignment can introduce padding in structs.
• To know sizes for sure on your machine, it is advisable to write a small program using sizeof.

2.7 Fixed-size types
To obtain deterministic sizes (architecture-independent), the C/C++ standard defines types in the <cstdint> header
(C++11 / C99). These types guarantee a precise number of bits, which is essential for serialization, binary formats
and network protocols.

Main fixed-size types:

• uint8_t / int8_t : unsigned / signed 8-bit integers
• uint16_t / int16_t : unsigned / signed 16-bit integers
• uint32_t / int32_t : unsigned / signed 32-bit integers
• uint64_t / int64_t : unsigned / signed 64-bit integers

Useful supplementary examples:

• int_fast32_t, uint_fast32_t : integer types at least 32 bits but chosen for better performance on the platform
• int_least16_t, uint_least16_t : integer types of at least 16 bits (minimum guarantee)
• intptr_t, uintptr_t : signed/unsigned integer types capable of holding a pointer value

Example usage:

#include <cstdint>
#include <cinttypes> // for PRIu32, PRId64, ...
#include <cstdio>

int main() {
uint8_t a = 255;

31

int16_t b = -12345;
uint32_t c = 0xDEADBEEF;

std::printf("sizeof(uint8_t) = %zu\n", sizeof(uint8_t));
std::printf("sizeof(int16_t) = %zu\n", sizeof(int16_t));
std::printf("sizeof(uint32_t) = %zu\n", sizeof(uint32_t));

// safe usage with printf:
std::printf("c = %" PRIu32 "\n", c);
return 0;

}

2.8 Bitwise operations
Bitwise operations allow direct manipulation of the bits of an integer. They are very useful for working with flags,
masks, optimizing simple calculations, or for low-level data processing (compression, binary formats, etc.).

Main operations in C/C++ :

• & : bitwise AND
• | : bitwise OR
• ^ : XOR (exclusive OR) bitwise
• ~ : NOT (negation) bitwise
• << : left shift (shift left)
• >> : right shift (shift right)

Simple examples:

unsigned a = 0b1100; // 12
unsigned b = 0b1010; // 10

unsigned and_ab = a & b; // 1000 (8)
unsigned or_ab = a | b; // 1110 (14)
unsigned xor_ab = a ^ b; // 0110 (6)
unsigned not_a = ~a; // inversion of all bits

// shifts
unsigned left = a << 1; // 11000 (24) : left shift (multiply by 2)
unsigned right = a >> 2; // 0011 (3) : right shift (divide by 2)

// display in hex / decimal as needed

Masks and bit tests
We use masks to isolate, set, or clear bits :

unsigned flags = 0;
const unsigned FLAG_A = 1u << 0; // bit 0 -> 0b0001
const unsigned FLAG_B = 1u << 1; // bit 1 -> 0b0010
const unsigned FLAG_C = 1u << 2; // bit 2 -> 0b0100

// enable a flag
flags |= FLAG_B; // flags = 0b0010

// test if a flag is set
bool hasB = (flags & FLAG_B) != 0;

// disable a flag
flags &= ~FLAG_B; // clears bit 1

// toggle a flag
flags ^= FLAG_C; // flips the state of bit 2

Important tips

• Use unsigned types (unsigned, uint32_t, uint64_t) for bitwise operations: the behavior of shifts on negative
signed integers can be undefined or implementation-defined.

32

• Left shift x << nmultiplies by 2^n provided it does not overflow. Right shift x >> n divides by 2^n for unsigned
types.

• To isolate a byte in a word (useful for endianness or extraction) :

uint32_t w = 0x12345678;
uint8_t byte0 = (w >> 0) & 0xFF; // 0x78 (LSB)
uint8_t byte1 = (w >> 8) & 0xFF; // 0x56

uint8_t byte2 = (w » 16) & 0xFF; // 0x34 uint8_t byte3 = (w » 24) & 0xFF; // 0x12 (MSB)

Using `std::bitset` to display/manipulate bits in a safe and readable way:

```cpp
#include <bitset>
#include <iostream>

std::bitset<8> bs(0b10110010);
std::cout << bs << "\n"; // prints 10110010
bs.flip(0); // toggles bit 0
bs.set(3); // sets bit 3 to 1
bs.reset(7);// sets bit 7 to 0

2.9 Summary
• The standard types cover the signed/unsigned integers, the floating-point numbers and the characters.
• Their size is not always fixed (except char = 1 byte guaranteed).
• sizeof lets you determine the exact size of a type or a variable on a given architecture.

33



3 Pointers
3.1 Concept of storage and memory addressing
The memory of a computer can be viewed as a large linear array of cells.

• Each cell contains one byte (i.e. 8 bits).
• Each cell has a unique address, which is a number that allows access to it.

We can therefore imagine memory as a succession of numbered cells:

Address Content
1000 10101010
1001 00001111
1002 11110000
1003 01010101
...

Here:

• each line represents one memory byte,
• the address (1000, 1001, …) is an integer managed by the processor,
• the content is a set of 8 bits (0 or 1).

Addresses and variables
When you declare a variable in C++:

int a = 42;

• The compiler reserves 4 consecutive bytes (on a 32-bit or 64-bit architecture).
• Suppose the variable starts at address 1000. The memory might look like this:

Address Content
1000 00101010 (0x2A)
1001 00000000
1002 00000000
1003 00000000

Thus:

• the variable a is viewed as a whole (42),
• but in reality, it is stored as four consecutive bytes in memory.

Size and alignment
• char: 1 byte
• short: 2 bytes
• int: 4 bytes (most of the time)
• long long: 8 bytes
• float: 4 bytes
• double: 8 bytes

Note: The size can vary depending on the architecture, but 1 byte = 8 bits is guaranteed.
For performance reasons, the compiler may introduce padding (filling with zeros) so that certain variables start

at addresses that are multiples of 2, 4 or 8. This makes memory access easier for the processor.

34



Importance of the address
The memory address is what allows:

• to identify precisely where a variable is located,
• to access its bytes,
• to manipulate complex data structures.

Example of an analogy
One can compare memory:

• to a library where each memory cell would be a book,
• the address is the shelf number + book number,
• the content is the information written in that book (the bits).

To access data, the processor must know the exact address.

Summary
• Memory is organized into 1-byte cells (8 bits).
• Each cell has a unique address.
• Variables occupy one or more consecutive cells.
• Addresses allow the processor to locate and manipulate these values.
• This view is essential to understand how pointers and dynamic memory allocation work.

3.2 Address of a variable
Each variable in memory has an address, i.e., the position of its first byte in the big memory array. In the C language
(and thus also in C++), you can access this address using the operator & (called address of ).

Simple example

#include <stdio.h>

int main() {
int a = 42;

printf("Valeur de a : %d\n", a);
printf("Adresse de a : %p\n", &a);

return 0;
}

Possible output (the address depends on execution and the machine) :

Valeur de a : 42
Adresse de a : 0x7ffee3b5a9c

• %d displays the integer value (42 here).
• %p displays a memory address (pointer format).
• &a means “the address of the variable a.”

Reading and writing via the C function scanf

When using scanf, you must provide the address of the variable in which to store the result.

35



#include <stdio.h>

int main() {
int age;

printf("Entrez votre age : ");
scanf("%d", &age); // &age = address of age

printf("Vous avez %d ans.\n", age);

return 0;
}

• Here scanf("%d", &age) places the read value directly into the memory cell of age.
• If we had written scanf("%d", age) (without &), the program would crash, because scanf needs the address to
modify the variable.

Observing the address
We can observe that two successive variables in memory have different addresses, separated by their size in bytes.

#include <stdio.h>

int main() {
int x = 10;
int y = 20;

printf("Adresse de x : %p\n", &x);
printf("Adresse de y : %p\n", &y);

return 0;
}

Example output :

Adresse de x : 0x7ffee3b5a98
Adresse de y : 0x7ffee3b5a94

Note: The addresses are close but not necessarily in increasing order, because the compiler and the system may
arrange variables differently (stack, memory alignment, etc.).

3.3 Passing arguments
Passing by value (default behavior)
In C and C++, function arguments are passed by value :

• When you call a function, the program creates a copy of the variable in the function’s memory.
• The function therefore works on its own copy.

Example:

#include <stdio.h>

void increment(int x) {
x = x + 1; // modifies only the local copy

}

int main() {
int a = 5;

increment(a);
printf("a = %d\n", a); // prints 5
return 0;

}

36



Memory explanation:

• a in main occupies a memory area.
• During the call increment(a), the value 5 is copied into a new local variable x in the function.
• Modifying x does not change a, because these are two independent variables.

Passing by address with a pointer
If we want a function to modify the original variable, we must pass to it not the value, but the address of the
variable.

#include <stdio.h>

void increment(int* p) {
*p = *p + 1; // modifies the value at the pointed-to address

}

int main() {
int a = 5;
increment(&a); // we pass the address of a
printf("a = %d\n", a); // prints 6
return 0;

}

Detailed explanation :

1. In main, we have the variable a (value 5) stored at a certain memory address (e.g. 1000).

2. The expression &a yields this address (1000).

3. When calling the increment(&a), it’s not the a that is copied, but its address (1000).

• The function therefore receives a pointer p, which is a copy of the address.

4. Inside increment, *p means “the value stored at the address p”.

• So *p = *p + 1; will fetch the value 5 at address 1000, increment it, and store 6 in the same place.

5. Since p designates the memory of a, the variable a is actually modified.

Summary of mechanisms
• Pass by value: we copy the value into a new local variable. The original variable is never modified.
• Pass by address (pointer): we copy the address into a pointer. The function thus has access to the same
memory area, and can modify the original variable via *p.

Diagram (simplified ASCII):

main:
a = 5 (address 1000)

Call increment(&a) :
copy of address 1000 into p

increment:
p = 1000
*p → value stored at address 1000 → 5
*p = 6 (modifies the memory shared with a)

37



Best practices with pointers
A pointer is a variable that contains a memory address. However, if a pointer is not initialized, it may contain an
arbitrary address, which leads to unpredictable behavior (segmentation fault, memory corruption).

Essential rule: always initialize pointers.
In modern C++, we use nullptr to indicate that a pointer points to nothing:

#include <iostream>

int main() {
int* p = nullptr; // pointer initialized, but points to nothing

if(p == nullptr) {
std::cout << "The pointer is empty, no dangerous access." << std::endl;

}

return 0;
}

Example of bad practice

int* p; // uninitialized pointer (dangerous!)
*p = 10; // undefined behavior → probable crash

Here, p contains an indeterminate value: accessing *p is dangerous.

Correct example

int* p = nullptr; // safe pointer, but empty
if(p != nullptr) {

*p = 10; // only access if p points to a valid variable
}

Summary
• Always initialize your pointers (with nullptr by default).
• Always check that a pointer is not null before using it.
• Prefer references (&) or modern containers (std::vector, std::unique_ptr, std::shared_ptr) when possible, to
avoid memory management errors.

3.4 Case of contiguous arrays
C arrays
In C and C++, an array is always stored in memory as a contiguous sequence of bytes. This means that the elements
follow one another, with no gaps between them.

Example :

#include <stdio.h>

int main() {
int tab[3] = {10, 20, 30};

printf("Address of tab[0] : %p\n", &tab[0]);
printf("Address of tab[1] : %p\n", &tab[1]);
printf("Address of tab[2] : %p\n", &tab[2]);

return 0;
}

Possible output :

38



Address of tab[0] : 0x7ffee6c4a90
Address of tab[1] : 0x7ffee6c4a94
Address of tab[2] : 0x7ffee6c4a98

We notice that the addresses are spaced by 4 bytes (the size of an `int`), which confirms memory contiguity.

### Pointer arithmetic

The name of an array (`tab`) is automatically converted to a **pointer to its first element** (`&tab[0]`).
We can then use the **pointer arithmetic**:

* `p + N` : advances the pointer by `N` elements.
* `*(p + N)` : accesses the value of the `N`-th element.

This is exactly equivalent to writing `tab[N]`.

Example:

```c
#include <stdio.h>

int main() {
int tab[3] = {10, 20, 30};
int* p = tab; // equivalent to &tab[0]

printf("%d\n", *(p + 0)); // 10
printf("%d\n", *(p + 1)); // 20
printf("%d\n", *(p + 2)); // 30

return 0;
}

These two notations are equivalent:

tab[i] <=> *(tab + i)

Memory diagram (example with tab[3])

Address : 1000 1004 1008
Contents: 10 20 30
Index : tab[0] tab[1] tab[2]

p = 1000
*(p+0) → value at 1000 → 10
*(p+1) → value at 1004 → 20
*(p+2) → value at 1008 → 30

Adaptation to the element size
Memory contiguity applies to any array type, not just integers. If we define an array of larger objects (for example
double or structs), the elements remain stored one after another.

Example with double

#include <stdio.h>

int main() {
double tab[3] = {1.1, 2.2, 3.3};

printf("Address of tab[0] : %p\n", &tab[0]);
printf("Address of tab[1] : %p\n", &tab[1]);
printf("Address of tab[2] : %p\n", &tab[2]);

39

return 0;
}

Possible output (each double = 8 bytes) :

Address of tab[0] : 0x7ffee6c4a90
Address of tab[1] : 0x7ffee6c4a98
Address of tab[2] : 0x7ffee6c4aa0

We can see that the addresses are spaced by 8, because a double occupies 8 bytes.

In C/C++, the expression p + N does not mean “add N bytes”, but “go to the N-th element starting from p”.

• If p is of type int* and sizeof(int) == 4, then:

p + 1 → advances by 4 bytes
p + 2 → advances by 8 bytes

• If p is of type double* and sizeof(double) == 8, then:

p + 1 → advances by 8 bytes
p + 2 → advances by 16 bytes

• In general:

Address(p + N) = Address(p) + N * sizeof(type)

It is the compiler that translates the operation into address calculation, and it is the processor that performs the
addition during execution.

Dynamic arrays in C++: std::vector
In modern C++, we use std::vector rather than static arrays, because it offers:

• a dynamic size (you can add elements with push_back),
• automatic memory management,
• and it preserves the memory contiguity.

Example:

#include <iostream>
#include <vector>

int main() {
std::vector<int> v = {10, 20, 30};

std::cout « “Address of v[0] :” « &v[0] « std::endl; std::cout « “Address of v[1] :” « &v[1] « std::endl; std::cout
« “Address of v[2] :” « &v[2] « std::endl; }

Typical output:

Address of v[0] : 0x7ffee6c4a90 Address of v[1] : 0x7ffee6c4a94 Address of v[2] : 0x7ffee6c4a98

We observe the same contiguity as with classic arrays.

Pointer arithmetic on `std::vector`

We can obtain a pointer to the internal data thanks to `v.data()` or `&v[0]`, then use the same logic as for C
arrays.

40


```cpp
#include <iostream>
#include <vector>

int main() {
std::vector<int> v = {10, 20, 30};
int* p = v.data(); // pointer to the first element

std::cout << *(p+0) << std::endl; // 10
std::cout << *(p+1) << std::endl; // 20
std::cout << *(p+2) << std::endl; // 30

}

Résumé
• The C arrays and the std::vectors store their elements in a contiguous manner.
• This allows fast index-based access (tab[i]) or via pointer arithmetic (*(p+i)).
• The std::vectors also offer a dynamic size and safe memory management, but preserve the same fundamental
properties of contiguity.

3.5 Contiguity in classes and structs
In C and C++, the structures (struct) and classes group several variables (members) into a single block of memory.
By default, the fields are laid out one after another, which guarantees amemory contiguity.

Simple example

#include <stdio.h>

struct Point2D {
int x;
int y;

};

int main() {
struct Point2D p = {1, 2};

printf("Address of p.x : %p\n", &p.x);
printf("Address of p.y : %p\n", &p.y);

return 0;
}

Possible output:

Address of p.x : 0x7ffee3b5a90
Address of p.y : 0x7ffee3b5a94

Here, the two integers x and y (4 bytes each) are stored one after another contiguously.

Padding and alignment
For performance reasons, the compiler may insert padding bytes between members in order to respect optimal
memory alignment.

Example:

struct Test {
char a; // 1 byte
int b; // 4 bytes

};

41



Memory layout:

Address Content
1000 a (1 byte)
1001-1003 padding (3 unused bytes)
1004-1007 b (4 bytes)

Example with multiple fields

struct Mixed {
char c; // 1 byte
double d; // 8 bytes
int i; // 4 bytes

};

Typical layout on a 64-bit machine:

Address Field
1000 c (1 byte)
1001-1007 padding (7 bytes)
1008-1015 d (8 bytes)
1016-1019 i (4 bytes)
1020-1023 padding (4 bytes for global alignment)

Total size: 24 bytes.

Contiguity in classes
In C++, a class behaves like a struct from a memory perspective:

• Data members are placed contiguously, with the same padding and alignment rules.

• The difference between struct and class is only in default visibility (public vs private).

std::vector of structures
In modern C++, we can store several objects struct or class in a std::vector. The vector guarantees that the elements
are placed contiguously in memory, exactly as for a C array.

Example :

#include <iostream>
#include <vector>

struct Point2D {
int x;
int y;

};

int main() {
std::vector<Point2D> points = {{1,2}, {3,4}, {5,6}};

std::cout << "Address of the first Point2D : " << &points[0] << std::endl;
std::cout << "Address of the second Point2D : " << &points[1] << std::endl;
std::cout << "Address of the third Point2D : " << &points[2] << std::endl;

}

ASCII diagram of a std::vector<Point2D>
Each Point2D occupies sizeof(Point2D) bytes (here, 8 bytes: 2 integers of 4 bytes). The elements of the std::vector

are arranged back-to-back in memory :

42



Memory of a std::vector<Point2D> with 3 elements

Address : 2000 2008 2016
Content : [x=1, y=2] [x=3, y=4] [x=5, y=6]
Size : 8 bytes 8 bytes 8 bytes

We can see that each element is a structured block, but the blocks remain contiguous.

Summary
• The fields of a struct or class are stored contiguously, with potential padding to respect alignment.
• The actual size may be larger than the sum of the fields.
• A std::vector<struct> allows creating a dynamic array of structures also contiguous in memory.
• This contiguity makes fast memory traversal possible and compatibility with C functions via points.data().

3.6 Memory Organization AoS vs SoA
When manipulating structured data in large quantities (for example 3D coordinates, particles, vertices in graphics),
there are two classic ways to organize data in memory:

Array of Structs (AoS)
This is the classic representation with a std::vector<struct>. Each element of the array is a complete structure.

Example :

struct Point3D {
float x, y, z;

};

std::vector<Point3D> points = {
{1.0f, 2.0f, 3.0f},
{4.0f, 5.0f, 6.0f},
{7.0f, 8.0f, 9.0f}

};

Memory (each Point3D = contiguous block of 12 bytes) :

[x=1, y=2, z=3] [x=4, y=5, z=6] [x=7, y=8, z=9]

Here, contiguity applies at the level of the structures:

• The Point3D are laid out back-to-back.
• Each Point3D itself contains its contiguous x, y, z fields.

Advantage: convenient for manipulating a complete point. Disadvantage: if one only wants to process the x,
one must unnecessarily traverse the y and z.

Struct of Arrays (SoA)
Here, we invert the organization: instead of storing an array of structures, we store a structure that contains an array
per field.

Example :

struct PointsSoA {
std::vector<float> x;
std::vector<float> y;
std::vector<float> z;

};

Memory (each field is contiguous separately) :

43



x : [1, 4, 7]
y : [2, 5, 8]
z : [3, 6, 9]

Here, contiguity applies at the field level:

• All x are stored one after another.
• All y are contiguous, and the same for the z.

Advantage: very efficient if one performs bulk processing on a single field (e.g. applying a transformation on
all x coordinates). Disadvantage: less natural if you want to work on a complete point (x,y,z grouped).

Contiguity: two complementary views
• AoS: contiguity by object. Each element of the array is a structured block ({x,y,z}), and the blocks follow
one another.

• SoA: contiguity by field. Each field is grouped in its own array, and the values follow per dimension.

Both approaches thus use memory contiguity, but not at the same level of structuring.

Practical choice
• AoS: often preferred when data are manipulated as independent entities (e.g. list of particles, game objects,
3D vectors in a physics engine).

• SoA: used in high-performance simulation, scientific computing, GPU or vectorized data processing, because
it favors optimized sequential accesses (cache, SIMD).

3.7 Memory allocation and deallocation
Memory allocation consists of dynamically reserving a memory region during program execution, and deallocation
consists of freeing it when it is no longer necessary. This dynamic management is indispensable when the size of
the data is not known at compile time or when their lifetime exceeds a local block.

In C and C++, dynamic memory is stored in a region called the heap, as opposed to the stack used for local
variables.

Stack vs heap
Variables on the stack:

• automatic allocation upon entering a block,
• automatic release upon exiting the block,
• very fast,
• size is limited.

void f() {
int x = 10; // on the stack

}

Dynamic memory on the heap:

• explicit allocation by the programmer,
• lifetime independent of the blocks,
• must be freed explicitly.

44



Dynamic allocation in C: malloc and free

In C, we use functions from the standard library <stdlib.h>.

#include <stdlib.h>

int* p = (int*)malloc(sizeof(int));

Here:

• malloc reserves a block of memory of sizeof(int) bytes,
• it returns a pointer of type void*,
• this pointer is explicitly converted to int*.

Usage:

#include <stdio.h>
#include <stdlib.h>

int main() {
int* p = (int*)malloc(sizeof(int));
if (p == NULL) {

return 1; // allocation failure
}

*p = 42;
printf("%d\n", *p);

free(p); // deallocation
return 0;

}

Points to note:

• malloc does not initialize the memory,

• free must be called exactly once for each successful allocation.

Dynamic allocation of arrays in C

int* tab = (int*)malloc(10 * sizeof(int));

Access:

tab[0] = 1;
tab[1] = 2;

Deallocation:

free(tab);

Dynamic allocation in C++: new and delete

In C++, we have the operators new and delete, which are type-aware and call constructors and destructors.
Allocation of an object:

int* p = new int(42);

Deallocation:

delete p;

For an array:

45



int* tab = new int[10];

Corresponding deallocation:

delete[] tab;

Fundamental rule:

• new ↔ delete

• new[] ↔ delete[]

Mixing them leads to a undefined behavior.

Allocation of objects and constructor calls

struct Point {
float x, y;
Point(float a, float b) : x(a), y(b) {}

};

int main() {
Point* p = new Point(1.0f, 2.0f); // constructor called
delete p; // destructor called

}

Classic error example: memory leak

void f() {
int* p = new int(10);
// forgetting to delete

}

Each call to f, memory is allocated but never freed: memory leak.

Double free (dangerous)

int* p = new int(5);
delete p;
delete p; // ERROR: double free

This leads to undefined behavior.

Null pointer after release
Good practice:

int* p = new int(5);
delete p;
p = nullptr;

This avoids accessing a freed pointer (dangling pointer).

Generic allocation with void*

In C, malloc returns a void*, which allows allocating any type of structure.

struct Point2D {
float x, y;

};

struct Point2D* p = (struct Point2D*)malloc(sizeof(struct Point2D));

46



But:

• no constructors are called,
• no type checking is performed.

Recommended approach in modern C++
In modern C++, we avoid manual memory management as much as possible.

To prefer:

• std::vector for dynamic arrays,
• std::unique_ptr for unique ownership,
• std::shared_ptr for shared ownership,
• automatic allocations on the stack when possible.

Example with std::vector:

#include <vector>

std::vector<int> v(10); // automatic allocation and deallocation

Summary
• Dynamic allocation is performed on the heap.
• In C: malloc / free (raw memory, void*).
• In C++: new / delete (types + constructors).
• Every allocation should be paired with a deallocation.
• Common errors are: memory leaks, double frees, dangling pointers.
• In modern C++, prefer containers and safe abstractions.

Manual memory management is powerful but dangerous. In C++, it should be limited to necessary
cases and replaced as much as possible by safe abstractions.

3.8 The generic pointer void*
In C and C++, there exists a peculiar pointer type: void*, called the generic pointer. A void* can contain the
address of any data type, without knowing its nature.

It therefore represents a raw address, without associated type information.

Declaration and principle

void* p;

Here:

• p can store the address of an int, a float, a struct, etc.
• the compiler does not know what p points to.

This means that:

• one can store an address in p,
• but one cannot access directly the pointed value.

47



Simple example

#include <stdio.h>

int main() {
int a = 42;
float b = 3.14f;

void* p;

p = &a; // p points to an int
p = &b; // p now points to a float

return 0;
}

In this example:

• p can successively contain the address of a then that of b,
• but no type information is preserved.

Impossibility of dereferencing directly
It is forbidden to do:

void* p = &a;
printf("%d\n", *p); // ERREUR

Why?

• *p means “access the value pointed to”,
• but the compiler does not know either the size nor the nature of the pointed-to type.

The type void literally means: absence of type information.

Explicit conversion (cast)
To access the pointed value, you must explicitly convert the void* to the correct pointer type.

#include <stdio.h>

int main() {
int a = 42;
void* p = &a;

int* pi = (int*)p; // explicit cast
printf("%d\n", *pi); // OK

return 0;
}

Steps:

1. p contains the address of a,
2. we explicitly tell the compiler: “consider this address as an int*”,
3. we can then dereference correctly.

Example with several types

#include <stdio.h>

void print_value(void* data, char type)
{

if (type == 'i') {
printf("int : %d\n", *(int*)data);

48



}
else if (type == 'f') {

printf("float : %f\n", *(float*)data);
}

}

int main() {
int a = 10;
float b = 2.5f;

print_value(&a, 'i');
print_value(&b, 'f');

return 0;
}

Here:

• the void* allows passing any type,
• but one must manually handle the correct interpretation.

Link with pointer arithmetic
Unlike other pointers (int*, double*, etc.), pointer arithmetic is forbidden on void* in C++.

void* p;
p + 1; // ERREUR en C++

Reason:

• p + 1 requires knowing sizeof(type),
• whereas void has no size.

In C (but not in C++), some compilers allow void* as a non-standard extension, treating it as a char*.

void* and arrays / raw memory
The void* is often used to manipulate raw memory, for example with malloc, memcpy, or low-level APIs.

Example :

#include <stdlib.h>
int main() { void* buffer = malloc(100); // 100 bytes of raw memory

// explicit interpretation
int* tab = (int*)buffer;
tab[0] = 42;

free(buffer);
return 0;

}

Here:

* `malloc` returns a `void*`,
* the programmer then decides **how to interpret** this memory.

### Practical usage

The `void*` is mainly used :

* in **plain C** (generic interfaces, system libraries),
* for low-level APIs,

49



* for manipulating raw memory,
* in historic generic functions (`qsort`, `bsearch`).

In **modern C++**, we prefer :

* templates,
* typed pointers,
* containers (`std::vector`, `std::array`),
* smart pointers (`std::unique_ptr`, `std::shared_ptr`).

### Key takeaway

> `void*` is a pointer without type information :
> it offers great flexibility, but **no safety**.
> Any correct usage relies on **explicit conversions** and the programmer's rigor.

## References

In C++, the **references** are introduced as a simpler and safer alternative to pointers.
They can be seen as an **alias** to an existing variable, and mainly as a **syntactic sugar** above the notion of

a pointer:

* Like a pointer, a reference allows you to work directly on an original variable without making a copy.
* Unlike a pointer, you don't need to write `*` or `->` : the reference is handled as if it were the variable

itself.

---

### Passing arguments: value, pointer, reference

#### Pass-by-value (default in C/C++)

```cpp
#include <iostream>

int ma_fonction(int b) {
b = b + 2; // modifies the local copy
return b;

}

int main() {
int a = 5;
int c = ma_fonction(a);
std::cout << a << ", " << c << std::endl; // a=5, c=7

}

Here:

• b is a copy of a.
• Modifying b does not affect a.

Pass-by-address with pointer (C style)

#include <iostream>

void ma_fonction(int* b) {
*b = *b + 2; // modifies the value pointed to

}

int main() {
int a = 5;
ma_fonction(&a); // we pass the address of a
std::cout << a << std::endl; // prints 7

}

50

Here :

• b is a copy of the pointer to a.
• We must use *b to access/modify the value.
• More verbose syntax, with risk of errors (null pointer, forgetting the *).

Pass-by-reference (style C++)

#include <iostream>

void ma_fonction(int& b) {
b = b + 2; // we have the impression of manipulating b as if it were a local variable

}

int main() {
int a = 5;
ma_fonction(a); // no &
std::cout << a << std::endl; // prints 7

}

Here :

• b is a reference alias to a.
• No special syntax, you manipulate b as if it were a local variable.
• It’s a syntactic sugar : behind the scenes, the compiler generates a pass-by-address, but the syntax is simpli-
fied.

Initialization of references

A reference must always be **initialized** at the moment of its declaration:

```cpp
int main() {

int a = 5;
int& ref_a = a; // OK: ref_a is an alias of a
ref_a = 9; // modifies a

int& ref_b; // ERROR: a reference must be initialized
}

Unlike a pointer, a reference:

• cannot be null,
• cannot be reassigned to another variable after initialization.

Constant references
A constant reference (const &) allows to:

• avoid an expensive copy,
• while guaranteeing that the object will not be modified.

#include <iostream>
#include <string>

void printMessage(const std::string& msg) {
std::cout << msg << std::endl;

}

int main() {
std::string text = "Bonjour";
printMessage(text); // no copy, and safety guaranteed

}

Constant references are widely used to pass large objects (vectors, strings, structs) without copying.

51



Concrete example: vectors and structures

#include <iostream>

struct vec4 {
double x, y, z, w;

};

// pass by reference to modify
void multiply(vec4& v, double s) {

v.x *= s; v.y *= s; v.z *= s; v.w *= s;
}

// pass by const reference to avoid a copy
void print(const vec4& v) {

std::cout << v.x << " " << v.y << " " << v.z << " " << v.w << std::endl;
}

int main() {
vec4 v = {1.1, 2.2, 3.3, 4.4};
multiply(v, 2.0); // modifies v
print(v); // prints without copying

}

Accessors by reference
In C++, references are very handy for writing accessors:

class Vec50 {
private:

float T[50];
public:

void init() {
for(int k=0; k<50; ++k)

T[k] = static_cast<float>(k);
}

// read-only accessor
float value(unsigned int i) const {

return T[i];
}

// read/write accessor: returns a reference
float& value(unsigned int i) {

return T[i];
}

};

int main() {
Vec50 v;
v.init();

std::cout << v.value(10) << std::endl; // reading
v.value(10) = 42; // writing via reference
std::cout << v.value(10) << std::endl;

}

Best practices
To do

• Use references to simplify code compared to pointers.
• Use const & to pass heavy objects (vectors, strings, classes).
• Return a reference if the goal is to allow modification (setter accessor).

To avoid

52



• Do not overuse non-const references in function parameters → the reader should immediately understand if
a variable is modified.

• Never return a reference to a local variable (it no longer exists after the function returns).

Summary
• A reference is an alias of a variable.

• It is implemented like a pointer, but with a simplified syntax (syntactic sugar).

• Constant references (const &) are fundamental for writing safe and efficient code.

• When used well, references combine the power of pointers with the readability of clear code.

3.9 Dynamic Allocation
Until now, we have seen automatic variables (declared inside a function), stored on the stack and destroyed
automatically at the end of the block.

But in some cases, we need data whose lifetime extends beyond the end of a block (for example: keeping an
array created in a function, handling large structures, or building dynamic graphs). In this case, we use dynamic
memory, allocated on the heap.

The stack vs the heap

Characteristic Stack (stack) Heap (heap)

Allocation Automatic Manual (or controlled by objects)
Lifetime Limited to the current block Until explicit release
Maximum size Limited (a few MB) Very large (several GB)
Management By the compiler By the programmer
Example int a; or int tab[10]; new int; or new int[n];

On most systems, the stack has a limited size (~8 MB by default), whereas the heap can use several gigabytes.
Dynamic allocation therefore allows you to create large structures or variable-sized ones at runtime.

Example: limited lifetime with automatic variables

#include <iostream>

int* createValue() {
int a = 42; // local variable on the stack
return &a; // � Dangerous: a is destroyed at the end of the function

}

int main() {
int* p = createValue();
std::cout << *p << std::endl; // undefined behavior!

}

a is destroyed when exiting createValue(). The returned pointer becomes dangling (dangerous).

Example: extended lifetime with dynamic allocation

#include <iostream>

int* createValue() {
int* p = new int(42); // allocated on the heap
return p; // valid even after the end of the function

}

53



int main() {
int* q = createValue();
std::cout << *q << std::endl; // 42
delete q; // deallocation required

}

Here, the variable *q persists after the end of createValue(). But the programmer must free the memory with
delete.

Dynamic allocation of an array

#include <iostream>

int* createArray(int n) {
int* arr = new int[n]; // allocation of n integers
for(int i=0; i<n; ++i)

arr[i] = i * 10;
return arr;

}

int main() {
int n = 5;
int* arr = createArray(n);

for(int i=0; i<n; ++i)
std::cout << arr[i] << " ";

delete[] arr; // deallocation required
}

Utility: n is known only at runtime → impossible to use a static array.

Memory Diagram

Pile (stack) Tas (heap)
------------ ------------
int main() { new int[3]

int n = 3; ---------------
int* arr = new int[n]; --> | 0 | 1 | 2 | ...

---------------
}

• The stack contains local variables (n, arr).
• The heap contains dynamically allocated data.
• Heap memory is not automatically freed → delete[] arr; required.

Common Problems
1. Memory leak:

void f() {
int* p = new int(10);
// oubli de delete → fuite mémoire

}

→ the memory remains occupied as long as the program runs.

2. Double free:

int* p = new int(5);
delete p;
delete p; // error : double free

54



3. Use after free:

int* p = new int(5);
delete p;
std::cout << *p; // undefined behavior

Example: resizing (principle)
When resizing a dynamic array manually, one must:

1. Allocate a new space.
2. Copy the old data.
3. Free the old space.

Old array (@100) : [10 20 30]
New array (@320) : [10 20 30 40]
delete[] @100

Note: Reallocation of an array always requires a new allocation + copy, hence the cost.
Modern containers (std::vector) automate this process efficiently.

Dynamic Structures: Lists and Graphs
Dynamic allocation also allows creating structures linked or hierarchical, where each element contains pointers
to others.

Example: minimal linked list

struct Node {
int value;
Node* next;

};

int main() {
Node* n1 = new Node{5, nullptr};
Node* n2 = new Node{8, nullptr};
n1->next = n2;

// traversal
for(Node* p = n1; p != nullptr; p = p->next)

std::cout << p->value << " ";

// freeing
delete n2;
delete n1;

}

Each element (Node) is allocated separately on the heap. [Attention]: It is important to free each element to
avoid leaks.

Modern Best Practices
In C++, we nowadays avoid direct new / delete. We prefer:

1. std::vector for dynamic arrays

#include <vector>
#include <iostream>

55



std::vector<int> createVector(int n) {
std::vector<int> v(n);
for(int i=0; i<n; ++i)

v[i] = i * 10;
return v; // automatic management

}

int main() {
auto v = createVector(5);
for(int x : v)

std::cout << x << " ";
}

→Memory is managed automatically (constructor / destructor).

2. Smart Pointers (std::unique_ptr, std::shared_ptr)

Smart pointers are classes in the C++ standard library () that encapsulate a raw pointer (T*) and automatically
manage the lifetime of the pointed resource.

They follow the RAII principle: the resource is automatically released when the pointer goes out of scope
(destruction of the object). Thus, there is no longer any need to manually call delete: the memory is freed as soon
as the object is no longer in use.

Example with std::unique_ptr
#include <memory>
#include <iostream>

int main() {
std::unique_ptr<int> p = std::make_unique<int>(42);
std::cout << *p << std::endl;

} // delete automatique ici

Explanation:

• std::unique_ptr<int> holds exclusive ownership of the resource: a single pointer manages the allocated object.
• std::make_unique<int>(42) dynamically creates an int containing 42 and returns a unique_ptr that becomes its
owner.

• When p goes out of scope (end of main), its destructor automatically calls delete on the object it manages.
• The memory is thus properly freed, even in the case of an exception or premature exit from the function.

Characteristics of std::unique_ptr:

• Ownership is unique (non-copyable).
• Transferable via std::move().
• Lightweight, safe and very fast.
• Ideal for representing exclusive ownership of a resource.

Example of usage with ownership transfer:

#include <memory>
#include <iostream>

void display(std::unique_ptr<int> p) {
std::cout << *p << std::endl;

}

int main() {
std::unique_ptr<int> a = std::make_unique<int>(7);
display(std::move(a)); // ownership transfer
// a no longer owns anything here

}

56



Example with std::shared_ptr
#include <memory>
#include <iostream>

int main() {
auto p1 = std::make_shared<int>(10);
auto p2 = p1; // resource sharing
std::cout << *p2 << std::endl;

} // memory freed when the last shared_ptr disappears

Detailed explanation:

• std::shared_ptr allows several pointers to share the same resource.
• Each copy (p2 = p1;) increases an internal reference count.
• When a shared_ptr is destroyed, the counter is decremented.
• When this counter reaches zero (no owners left), the destructor automatically calls delete on the resource.

Thus, the memory is freed exactly when it is no longer used by anyone.
Characteristics of std::shared_ptr:

• Copyable: multiple instances can point to the same data.
• Reference-counted: automatic destruction when the last owner disappears.
• Slightly more expensive than a unique_ptr (internal atomic counter).
• Ideal for shared structures or non-hierarchical graphs.

Comparison of the two smart pointer types

Type CopyableResource sharing Destruction Typical use case

std::unique_ptr<T>No No Automatic, as soon as the
pointer goes out of scope

Exclusive ownership (e.g., internal
component of an object)

std::shared_ptr<T>Yes Yes (reference
counter)

Automatic, when the last
pointer is destroyed

Resources shared among multiple
objects or functions

Memory Illustration
Unique_ptr case :
+---------------------+
| unique_ptr<int> p ──►| [42]
+---------------------+

│
automatic deletion at the end of the block

Shared_ptr case :
+---------------------+ +---------------------+
| shared_ptr<int> p1 ───┐| | counter = 2 |
| shared_ptr<int> p2 ───┘──►| [10]
+---------------------+ +---------------------+

│
automatic deletion when counter = 0

Why smart pointers replace new and delete

• They avoid memory leaks by automatically managing deallocation.
• They preserve safety (no double-free or dangling pointer).
• They simplify code: no need to call delete anymore.
• They integrate naturally with other classes of modern C++ (std::vector, std::map, std::thread, etc.).

57



In summary
• std::unique_ptr : exclusive, safe, ideal by default.
• std::shared_ptr : shared, useful when several entities need to access the same resource.
• Both rely on the RAII, guaranteeing automatic release and code safety.

58



4 Classes
4.1 Introduction
In C++, a class allows grouping, within a single entity, of data (called attributes) and functions (called methods)
that manipulate these data. An instance of a class is called an object. This organization facilitates the structuring
of code, its readability and maintenance.

Regrouper des données : premier exemple avec struct
We often start with a struct to represent a simple object:

struct vec3 {
float x;
float y;
float z;

};

Here, vec3 groups three values representing a 3D vector. The members are public by default, which means
they are accessible directly:

vec3 v;
v.x = 1.0f;
v.y = 2.0f;
v.z = 3.0f;

This type of structure is well suited for simple data aggregates, very common in computer graphics.

Ajouter un comportement : méthodes
A class or a struct can also containmember functions :

#include <cmath>

struct vec3 {
float x, y, z;

float norm() const {
return std::sqrt(x*x + y*y + z*z);

}
};

The method norm() operates directly on the attributes x, y and z of the object :

vec3 v{1.0f, 2.0f, 2.0f};
float n = v.norm(); // n = 3

struct vs class
The keyword class works exactly like struct, with the difference that: the members are private by default.

class vec3 {
float x, y, z; // private by default

};

This code does not compile :

vec3 v;
v.x = 1.0f; // ERROR: x is private

To make some members accessible, you must specify the access levels.

59



Attributs publics et privés
We use the keywords public and private to control access to members:

class vec3 {
public:

vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

float norm() const {
return std::sqrt(x*x + y*y + z*z);

}

private:
float x, y, z;

};

Usage :

vec3 v(1.0f, 2.0f, 2.0f);

float n = v.norm(); // OK
// v.x = 3.0f; // ERROR: x is private

Here:

• the attributes are private→ protected against uncontrolled modifications,
• themethods are public→ interface accessible to the user.

Encapsulation et sécurité
Thanks to this encapsulation, the object guarantees its internal consistency. For example, one can enforce certain
rules:

class Circle {
public:

Circle(float radius) {
set_radius(radius);

}

float area() const {
return 3.14159f * r * r;

}

void set_radius(float radius) {
if (radius > 0.0f)

r = radius;
}

private:
float r;

};

Here, the radius can never become negative, because direct access to r is forbidden.

Bonnes pratiques
• Use struct for:

– simple objects,
– primarily data carriers,
– without complex invariants.

• Use class for :

• encapsulate data,

– control access,
– guarantee internal invariants.

60



4.2 Initialization, Constructors
In C++, the initialization of an object is handled by the constructors. A constructor is a special function (same
name as the class, no return type) automatically called when the object is created. Its purpose is to guarantee that
the object is in a valid state from the start.

Classic problem: uninitialized attributes
If a class/struct contains primitive types (int, float, etc.), they are not necessarily initialized automatically.

#include <iostream>

struct vec3 {
float x, y, z;

};

int main() {
vec3 v; // x,y,z undefined !
std::cout << v.x << std::endl; // undefined behavior

}

In the case of an aggregate struct, you can force zero initialization with {}:

vec3 v{}; // x=y=z=0

But as soon as we want to precisely control the object’s state, we use constructors.

Default constructor
The default constructor takes no arguments. It is often used to set coherent values.

struct vec3 {
float x, y, z;

vec3() : x(0.0f), y(0.0f), z(0.0f) {}
};

int main() {
vec3 v; // calls vec3()

}

Here, v is guaranteed valid: its fields are 0.

Initialization list
The syntax : x(...), y(...), z(...) is the initializer list. It initializes the attributes before entering the constructor
body.

struct vec3 {
float x, y, z;

vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}
};

Usage:

vec3 v(1.0f, 2.0f, 3.0f);
vec3 w{1.0f, 2.0f, 3.0f}; // uniform (often recommended)

This list is preferable to an assignment in the constructor body, because it avoids a “double step” (construction
then reassignment) and it is required for certain members.

Overloaded constructors
We can define several constructors to offer different ways of creating an object.

61



struct vec3 {
float x, y, z;

vec3() : x(0), y(0), z(0) {}
vec3(float v) : x(v), y(v), z(v) {}
vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

};

int main() {
vec3 a; // (0,0,0)
vec3 b(1.0f); // (1,1,1)
vec3 c(1.0f,2.0f,3.0f); // (1,2,3)

}

One-argument constructor and explicit

A constructor with a single argument can serve as an implicit conversion, which can cause side effects. The explicit

keyword prevents these automatic conversions.

struct vec3 {
float x, y, z;

explicit vec3(float v) : x(v), y(v), z(v) {}
};

vec3 a(1.0f); // OK
// vec3 b = 1.0f; // forbidden thanks to explicit

This makes the code safer and more readable.

Const members and references: constructor required
The const members and references must be initialized via the initializer list.

struct sample {

int const id;
float& ref;

sample(int id_, float& ref_) : id(id_), ref(ref_) {}

};

Sans liste ’dinitialisation, ce code ne compile pas, car `id` et `ref` ne peuvent pas être “”assigned après coup :
they must be initialized immediately. // Note: I kept the French quotes around assigned as in the original.

### Destructor (reminder)

The destructor is called automatically when the object is destroyed (end of scope, `delete`, etc.). It mainly
serves to release resources (file, memory, …GPU).

```cpp
#include <iostream>

struct tracer {
tracer() { std::cout << "Constructed\n"; }
~tracer() { std::cout << "Destroyed\n"; }

};

int main() {
tracer t; // "Constructed"

} // "Destroyed"

62

Best practices
• Always initialize attributes (via constructor or {}).
• Prefer the initialization list : to initialize members.
• Use explicit for single-argument constructors, unless implicit conversion is desired.
• Design constructors to guarantee objects are always valid.

4.3 Operators
In C++, it is possible to overload operators for classes and structures tomake their usemore natural and expressive.
This feature is particularly useful in computer graphics, where one frequently manipulates vectors, matrices, colors
or transformations, and where expressions like v1 + v2 or 2.0f * v are much more readable than an explicit function
call.

General principle
Operator overloading consists of defining a special function named operator<symbol>. From the compiler’s point of
view, an expression like:

a + b

is translated to:

operator+(a, b);

or, in the case of a member operator:

a.operator+(b);

Overloading does not create a new operator: it simply redefines the behavior of an existing operator for a
given type.

Member and non-member operators
An operator can be defined:

• as a member method of the class,
• or as a non-member function (often preferable for symmetrical operators).

Common rule:

• operators that modify the object (+=, *=, [], etc.) are often member methods;
• symmetric binary operators (+, -, *) are often non-member functions.

Example: arithmetic operators for a 3D vector

struct vec3 {
float x, y, z;

vec3() : x(0), y(0), z(0) {}
vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

vec3& operator+=(vec3 const& v) {
x += v.x;
y += v.y;
z += v.z;
return *this;

}
};

The += operator modifies the current object and returns a reference to it.
We then define + as a non-member operator by reusing +=:

63

vec3 operator+(vec3 a, vec3 const& b) {
a += b;
return a;

}

Usage:

vec3 a{1,2,3};
vec3 b{4,5,6};

vec3 c = a + b; // (5,7,9)

a += b; // a becomes (5,7,9)

Operators with different types

We can define operators between different types, for example scalar multiplication:

```cpp
vec3 operator*(float s, vec3 const& v) {

return vec3{s*v.x, s*v.y, s*v.z};
}

vec3 operator*(vec3 const& v, float s) {
return s * v;

}

This allows natural notation:

vec3 v{1,2,3};
vec3 w = 2.0f * v;

Comparison operators
The comparison operators allow comparing objects:

bool operator==(vec3 const& a, vec3 const& b) {
return a.x == b.x && a.y == b.y && a.z == b.z;

}

bool operator!=(vec3 const& a, vec3 const& b) {
return !(a == b);

}

Since C++20, there is also the <=> operator (three-way comparison), but its use goes beyond the scope of this
introduction.

Access operator []
The [] operator is often used to provide indexed access to internal data:

struct vec3 {
float x, y, z;

float& operator[](int i) {
return (&x)[i]; // contiguous access

}

float const& operator[](int i) const {
return (&x)[i];

}
};

Usage:

64



vec3 v{1,2,3};
v[0] = 4.0f;
float y = v[1];

The const version is essential to allow read access on a constant object.

Display operator <<
To facilitate debugging, we often overload the << operator with std::ostream:

#include <iostream>

std::ostream& operator<<(std::ostream& out, vec3 const& v) {
out << "(" << v.x << ", " << v.y << ", " << v.z << ")";
return out;

}

Usage:

vec3 v{1,2,3};
std::cout << v << std::endl;

Best practices
• Always use constant references for read-only parameters.
• Return *this by reference for mutating operators (+=, *=, etc.).
• Avoid overloads that make the code ambiguous or counterintuitive.
• Do not overload an operator if its mathematical or logical meaning is not clear.

Operator overloading allows writing code that is more readable and expressive, but it must remain simple,
coherent and predictable.

4.4 Inheritance
Inheritance is a central mechanism of object-oriented programming that allows you to define a new class from an
existing class. The derived class inherits attributes and methods from the base class, which promotes code reuse
and the hierarchical structuring of concepts. In C++, inheritance is often used to factor out common behaviors
while allowing specializations.

General principle
We define a derived class by indicating the base class after : :

class Derived : public Base {
// content specific to Derived

};

The keyword public indicates that the public interface of the base class remains public in the derived class. This
is the most common case and the one used in the majority of object-oriented designs.

Simple example of inheritance
Consider a base class representing a geometric shape:

class Shape {
public:

float x, y;

Shape(float x_, float y_) : x(x_), y(y_) {}

void translate(float dx, float dy) {

65



x += dx;
y += dy;

}
};

We can define a derived class that specializes this behavior:

class Circle : public Shape {
public:

float radius;

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}

};

Usage:

Circle c(0.0f, 0.0f, 1.0f);
c.translate(1.0f, 2.0f); // méthode héritée de Shape

The Circle class automatically inherits x, y and the translate method.

Constructors and inheritance
The constructor of the derived classmust explicitly call the base class constructor in its initializer list.

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}

If the base class constructor is not called explicitly, the compiler will try to call the default constructor, which
can cause an error if it does not exist.

Access to members: public, protected, private
The access level of the base class members determines their visibility in the derived class:

• public: accessible everywhere, including in derived classes.
• protected: accessible only within the class and its derived classes.
• private: accessible only within the base class.

Example:

class Shape {
protected:

float x, y;

public:
Shape(float x_, float y_) : x(x_), y(y_) {}

};

class Circle : public Shape {
public:

float radius;

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}

float center_x() const {
return x; // autorisé car x est protected

}
};

Method overriding
A derived class can override a method of the base class to provide a specific behavior.

66



class Shape {
public:

float x, y;

Shape(float x_, float y_) : x(x_), y(y_) {}

float area() const {
return 0.0f;

}
};

class Rectangle : public Shape {
public:

float w, h;

Rectangle(float x_, float y_, float w_, float h_)
: Shape(x_, y_), w(w_), h(h_) {}

float area() const {
return w * h;

}
};

Here, Rectangle::area hides the version defined in Shape. This mechanism naturally prepares the introduction of
polymorphism, which will be studied in the next chapter.

Inheritance and code factoring
Inheritance helps avoid duplication:

class Vehicle {
public:

float speed;

void accelerate(float dv) {
speed += dv;

}
};

class Car : public Vehicle { // specific behavior };
class Plane : public Vehicle { // specific behavior };

The `Car` and `Plane` classes share the same base behavior without duplication.

### Best practices

* Use inheritance to express an is-a relationship (*is-a*).
* Prefer base classes **simple and stable**.

## Polymorphism

## Polymorphism

The **Polymorphism** allows to manipulate objects of different types **through a common interface**, while
automatically calling the correct implementation according to the **actual type** of the object. In C++, it
relies on inheritance, the **virtual functions** and the use of **pointers or references** to a base class.
It is particularly useful when one wants to **store heterogeneous objects in the same container** and handle
them uniformly.

### The problem: storing different objects in a single container

Suppose we want to represent different geometric shapes and compute their total area.

```cpp
struct Circle {

67

float r;
float area() const {

return 3.14159f * r * r;
}

};

struct Rectangle {
float w, h;
float area() const {

return w * h;
}

};

These two types have an area() method, but they have no type relation. Therefore it is impossible to write:

std::vector<Circle> shapes; // only circles
std::vector<Rectangle> shapes; // only rectangles

and especially impossible to do:

std::vector</* Circle and Rectangle */> shapes; // impossible

Without polymorphism, we are forced either to:

• duplicate code,
• use tests on the type,
• or design an artificial structure grouping all possible cases.

Polymorphism provides an elegant solution to this problem.

Common interface via a base class
We start by defining a base class representing the general concept of “shape”:

class Shape {
public:

virtual float area() const = 0; // pure virtual method
virtual ~Shape() = default;

};

This class is abstract:

• it defines an interface,
• it cannot be instantiated.

Specialized derived classes
Each concrete shape inherits from Shape and implements area() :

class Circle : public Shape {
public:

float r;

explicit Circle(float r_) : r(r_) {}

float area() const override {
return 3.14159f * r * r;

}
};

class Rectangle : public Shape {
public:

float w, h;

Rectangle(float w_, float h_) : w(w_), h(h_) {}

68

float area() const override {
return w * h;

}
};

Polymorphic storage in a container
Thanks to inheritance and virtual functions, we can now store pointers to the base class in a single container:

#include <vector>
#include <memory>

int main() {

std::vector<std::unique_ptr<Shape>> shapes;

shapes.push_back(std::make_unique<Circle>(2.0f));
shapes.push_back(std::make_unique<Rectangle>(3.0f, 4.0f));

float total_area = 0.0f;
for (auto const& s : shapes) {

total_area += s->area(); // polymorphic call
}
}
Here:

* the container only knows the type `Shape`,
* each element points to an object of a different concrete type,
* the call to `area()` is resolved **dynamically** according to the real type (`Circle` or `Rectangle`).

Role of `virtual` and dynamic dispatch

The call:

```cpp
s->area();

is resolved at run time thanks to the virtual table:

• if s points to a Circle, Circle::area() is called,
• if s points to a Rectangle, Rectangle::area() is called.

This is the heart of dynamic polymorphism.

Importance of the virtual destructor
The objects are destroyed via a pointer to the base class. Therefore the destructor must be virtual:

class Shape {
public:

virtual ~Shape() = default;
};

Without this, the destructor of the derived class would not be called, which could lead to resource leaks.

Why pointers and not objects?
We cannot store derived objects directly in a container of type std::vector<Shape> because that would cause a slicing
(loss of the derived part). Pointers (often smart pointers) avoid this issue and enable dynamic binding.

Cost and alternatives
Dynamic polymorphism involves:

• an indirection,
• a slightly higher call cost than a non-virtual function.

69



In performance-critical loops, one may sometimes favor static polymorphism via templates, to be discussed
later.

Use of raw pointers
In the previous examples, we used smart pointers (std::unique_ptr) to automatically manage the lifetime of objects.
It is however important to understand that polymorphism in C++ historically works with raw pointers (Shape*).
These offer more freedom, but require manual memory management, which greatly increases the risk of errors.

Example with raw pointers

#include <vector>

int main() {
std::vector<Shape*> shapes;

shapes.push_back(new Circle(2.0f));
shapes.push_back(new Rectangle(3.0f, 4.0f));

float total_area = 0.0f;
for (Shape* s : shapes) {

total_area += s->area(); // polymorphic call
}

// Manual release of memory
for (Shape* s : shapes) {

delete s;
}

}

Here:

• the objects are allocated dynamically with new,
• the container stores pointers to the base class Shape,
• the calls to area() are resolved dynamically,
• the programmer must explicitly release the memory with delete.

Critical role of the virtual destructor

With raw pointers, the virtual destructor is absolutely indispensable:

class Shape {
public:

virtual ~Shape() = default;
};

Without a virtual destructor, the call:

delete s;

would destroy only the Shape portion of the object, and not the derived portion (Circle, Rectangle), leading to
resource leaks and undefined behavior.

Common problems with raw pointers

The use of raw pointers exposes you to several classic mistakes:

• forgetting to call delete → memory leak;
• double delete → undefined behavior;
• deletion in the wrong order;
• exception or early return preventing release;
• confusion about who is responsible for destruction.

These problems are difficult to detect and fix, especially in large projects.

70



Best practices
• Use polymorphism to solve problems of uniform treatment of heterogeneous objects.
• Define abstract base classes as interfaces.
• Always declare a virtual destructor in a polymorphic hierarchy.
• Use override to safeguard overrides.
• Combine polymorphism and smart pointers (std::unique_ptr).

Polymorphism thus enables designing extensible systems where new types can be added without modifying
existing code, especially when dealing with collections of varied objects.

4.5 Access control: const
In C++, the keyword const applied to the class methods plays a central role in access control and in code safety. It
is not merely a documentation hint: a const method and a non-const method are considered by the compiler as two
different methods, able to coexist in the same class with the same name.

Meaning of a const method
A method declared with const after its signature guarantees that it does not modify the state of the object.

class vec3 {
public:

float x, y, z;

float norm() const {
return std::sqrt(x*x + y*y + z*z);

}
};

The const here means that the method cannot modify x, y or z. Any attempt to modify would cause a compilation
error.

float norm() const {
x = 0.0f; // ERREUR : modification interdite
return 0.0f;

}

Constant objects and accessible methods
An object declared const can call only const methods.

const vec3 v{1.0f, 2.0f, 3.0f};

v.norm(); // OK
// v.normalize(); // ERREUR if normalize() is not const

This naturally imposes a clear separation between:

• the read (access, calculations) methods,
• themodification (state-updating) methods.

const and non-const methods: two distinct signatures
A const method and a non-const method bearing the same name are not the same function. They can be defined
simultaneously in a class.

Here:

• the non-const version is called on a mutable object,
• the const version is called on a constant object.

Usage:

71



vec3 a{1,2,3};
a[0] = 5.0f; // calls the non-const version

const vec3 b{1,2,3};
float x = b[0]; // calls the const version

The compiler automatically selects the appropriate version based on the object’s const-ness.

Classic example: read/write accessor

class Buffer {
public:

float& value() {
return data;

}

float value() const {
return data;

}

private:
float data;

};

Here:

• value() (non-const) allows modifying the data,
• value() const allows only reading it.

Buffer b;
b.value() = 3.0f; // non-const version

const Buffer c;
// c.value() = 3.0f; // ERROR
float v = c.value(); // const version

Conceptual significance
This distinction allows:

• to express clearly the intentions of the code,
• to guarantee that certain operations have no side effects,
• to detect errors at compile time,
• to write more robust interfaces.

In a well-structured design, the majority of methods should be const. Non-const methods correspond to explicit
modification operations.

Best practices
• Mark every method that does not modify the object as const.
• Systematically provide both a const and a non-const version when access may be read or written.
• Consider a const method and a non-const method as two distinct contracts.
• Use const as a design tool, not merely as a syntactic constraint.

4.6 Keyword: static
4.7 Access management: the static keyword in classes
The keyword static, applied to class members, deeply changes their nature and their lifetime. A static member
does not belong to an object, but to the class itself. It is therefore shared by all instances of this class. This

72



mechanism is essential to represent global data or behaviors tied to a concept, rather than to a particular object.

Static attributes
A static attribute is unique for the entire class, regardless of how many objects are created.

class Counter {
public:

Counter() {
++count;

}

static int get_count() {
return count;

}

private:
static int count;

};

The declaration inside the class is not enough. The static attribute must be defined once in a .cpp file:

int Counter::count = 0;

Usage :

```cpp
Counter a;
Counter b;
Counter c;

int n = Counter::get_count(); // n = 3

All the Counter objects share the same variable count.

Accessing static attributes
A static attribute:

• can be accessed without an object, via the class name,
• can also be accessed from an object, but that is not recommended.

Counter::get_count(); // recommended form

This underlines the fact that the data belongs to the class, and not to a particular instance.

Static methods
A static method is a function associated with the class, but independent of any instance.

class MathUtils {
public:

static float square(float x) {
return x * x;

}
};

Usage :

float y = MathUtils::square(3.0f);

73

Constraints of static methods
A static method :

• has no this pointer,
• can access only the static members of the class,
• cannot directly access non-static attributes.

class Example {
public:

static void f() {
// x = 3; // ERROR: x is not static
y = 4; // OK

}

private:
int x;
static int y;

};

static and initialization
Since C++17, it is possible to initialize directly some static attributes in the class if they are constexpr or of literal
type.

class Physics {
public:

static constexpr float gravity = 9.81f;
};

Usage :

float g = Physics::gravity;

In this case, no additional definition in a .cpp is necessary.

Common use cases
The keyword static is used for:

• counting the number of instances of a class,
• storing global constants related to a concept,
• sharing common resources,
• grouping utility functions related to a class,
• implementing factories (factory methods).

Example: unique identifier per object

class Object {
public:

Object() : id(next_id++) {}

int get_id() const {
return id;

}

private:
int id;
static int next_id;

};

int Object::next_id = 0;

Each object receives a unique identifier, generated from a shared counter.

74

Best practices
• Use static to express a belonging to the class, not to the object.
• Access static members via ClassName::member.
• Limit the use of mutable static attributes to avoid hidden dependencies.
• Prefer constexpr static for constants known at compile time.

Key takeaway
A static member is unique and shared, it belongs to the class, not to the objects.

75

5 Threads and Parallelism
The parallelism designates the ability of a program to executemultiple tasks simultaneously. In C++, this notion
is directly related to threads, which allow exploiting the multiple cores of modern processors. Understanding
threads is essential for writing high-performance programs, but also safe and correct ones.

5.1 Concept of a thread
A thread is an independent execution thread within the same program.

• A classic program has a single thread (sequential execution).
• A multithreaded program hasmultiple threads, executed in parallel or near-parallel.

All the threads of the same program:

• share the same memory space (heap, global variables),
• each has its own execution stack (local variables, function calls).

(Petit reminder: in C++ we often manipulate threads via the std::thread class provided in <thread>.)

5.2 Creating a thread in C++
Since C++11, the standard library provides std::thread.

(std::thread: a class that represents a thread of execution and allows launching a function in a separate thread;
defined in <thread>.)

Example simple:

#include <iostream>
#include <thread>

void task() {
std::cout << "Hello from a thread" << std::endl;

}

int main() {
std::thread t(task); // thread creation
t.join(); // wait for the thread to finish
return 0;

}

Important points:

• the thread starts immediately upon its creation,
• join() blocks the main thread until the end of thread t,
• detach() detaches the thread from the calling thread: it becomes independent and is no longer joinable,
• not calling join() or detach() before the destruction of a std::thread object leads to std::terminate() at runtime.

In this example:

• task() runs in a separate thread,
• the main thread waits for the end of t thanks to join().

5.3 Example of parallel execution
Now consider two threads performing a task visible over time.

#include <iostream>
#include <thread>
#include <chrono>

76

void task(int id) {
for(int i = 0; i < 5; ++i) {

std::cout << "Thread " << id << " : step " << i << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(100));

}
}

int main() {
std::thread t1(task, 1);
std::thread t2(task, 2);

t1.join();
t2.join();

return 0;
}

(Note: std::chrono (in <chrono>) provides types for durations and clocks, e.g., milliseconds.)
Typical output (the exact order may vary) :

Thread 1 : step 0
Thread 2 : step 0
Thread 1 : step 1
Thread 2 : step 1
Thread 2 : step 2
Thread 1 : step 2
Thread 1 : step 3
Thread 2 : step 3
Thread 2 : step 4
Thread 1 : step 4

What we observe:

• both threads progress at the same time,
• their outputs are interleaved,
• the order is not deterministic.

5.4 Passing arguments to threads
Arguments are copied by default.

void print(int x) {
std::cout << x << std::endl;

}

std::thread t(print, 42);
t.join();

Following the generic format for argument passing.

std::thread t(fonction, arg1, arg2, arg3, ...);

To pass a reference :

#include <functional>

void increment(int& x) {
x++;

}

int main() {
int a = 5;
std::thread t(increment, std::ref(a));
t.join();

}

77

5.5 Multiple threads and real parallelism
Example with several threads :

#include <thread>
#include <vector>

void work(int id) {
// independent calculation

}

int main() {
std::vector<std::thread> threads;

for(int i = 0; i < 4; ++i)
threads.emplace_back(work, i);

for(auto& t : threads)
t.join();

}

Each thread can be executed on a different core.

5.6 Shared memory
Threads share memory, which introducesmajor risks:

• race conditions (race conditions),
• data inconsistencies,
• non-deterministic behaviors.

Dangerous example:

int counter = 0;

void increment() {
counter++; // non-atomic

}

If several threads execute increment(), the result is unpredictable.

5.7 Synchronization and critical sections
A critical section is a region of code that must be executed by only one thread at a time.

In C++, we use std::mutex.
(std::mutex : mutex (lock) defined in <mutex> used to protect a critical section.)

#include <mutex>

int counter = 0;
std::mutex m;

void increment() {
std::lock_guard<std::mutex> lock(m);
counter++;

}

• the mutex prevents concurrent access,
• lock_guard guarantees automatic unlocking.

5.8 Atomic variables
For simple operations, one can use std::atomic.

78

#include <atomic>

std::atomic<int> counter(0);

void increment() {
counter++;

}

Advantages :

• faster than a mutex,
• safe for elementary operations.

Limitation :

• unsuitable for complex structures.

Cost and limits of multithreading
Creating threads has a cost :

• creation,
• synchronization,
• memory contention.

Too many threads can :

• degrade performance,
• increase latency,
• complicate reasoning.

Best practice :

• use a number of threads close to the number of cores,
• favor coarse-grained tasks over very fine-grained ones.

79

6 Generic Programming, Template
The generic programming allows writing code type-independent, while preserving the performance of com-
piled C++. In C++, this paradigm relies primarily on the templates, which allow defining functions and classes
parameterized by types (or values). Templates are ubiquitous in the standard library (STL) and constitute a funda-
mental tool for writing reusable, expressive, and efficient code.

6.1 General Principle of Templates
A template is a code model that is not directly compiled. The compiler automatically generates a specialized
version of the code for each type used.

template <typename T>
T add(T a, T b) {

return a + b;
}

The keyword typename (or alternatively class in this context) introduces a type parameter in the declaration
template <typename T>.

Usage :

int a = add(2, 3); // T = int
float b = add(1.5f, 2.5f); // T = float

For each type (int, float), the compiler generates a different function, with the same performance as hand-
written code.

Function Templates
Function templates allow writing generic algorithms without duplicating the code.

template <typename T>
T maximum(T a, T b) {

return (a > b) ? a : b;
}

This function works for any type supporting the > operator :

maximum(3, 5); // int
maximum(2.0f, 1.5f); // float

If the type does not support the required operator, the error is detected at compile-time.

Class Templates
Templates can also be used to define generic classes.

template <typename T>
struct Box {

T value;

explicit Box(T v) : value(v) {}
};

Usage :

Box<int> a(3);
Box<float> b(2.5f);

Here, Box<int> and Box<float> are two distinct types generated by the compiler.

80

Examples for Vectors
In computer graphics, templates are heavily used for:

• vectors and matrices of varying dimensions or types,
• typed CPU/GPU buffers,
• algorithms independent of precision (float, double).

Example of a generic vector :

template <typename T>
struct vec3 {

T x, y, z;

vec3(T x_, T y_, T z_) : x(x_), y(y_), z(z_) {}

T norm2() const {
return x*x + y*y + z*z;

}
};

Usage :

vec3<float> vf(1.0f, 2.0f, 3.0f);
vec3<double> vd(1.0, 2.0, 3.0);

Non-Type Template Parameters
A template can also take non-type parameters, known at compile time.

template <typename T, int N>
struct Array {

T data[N];

T& operator[](int i) { return data[i]; }
T const& operator[](int i) const { return data[i]; }

};

Usage :

Array<float, 3> v; // size known at compile time

This principle is used in std::array<T, N>.

Template specialization
It is possible to provide a specific implementation for a given type.

template <typename T>
struct Printer {

static void print(T const& v) {
std::cout << v << std::endl;

}
};

// spécialisation pour bool
template <>
struct Printer<bool> {

static void print(bool v) {
std::cout << (v ? "true" : "false") << std::endl;

}
};

The specialization allows adapting the behavior without modifying the generic code.

81

6.2 Compilation principles: static duck typing, instantiation,
and header files

The compilation of templates in C++ follows specific rules, different from those of regular code. Understanding
these principles is essential to interpret compiler error messages and organize your code correctly.

Static duck typing
Templates rely on a principle called duck typing static.

The principle is as follows:

A type is valid if it provides all the operations used in the template.

For example:

template <typename T>
T square(T x) {

return x * x;
}

This template imposes no explicit constraint on T. However, during instantiation, the compiler requires that
the type used possesses the operator *.

square(3); // OK : int supports *
square(2.5f); // OK : float supports *

On the other hand:

struct A {};

square(A{}); // ERREUR de compilation

The error occurs at themoment the template is instantiated, and not during its definition. This is a key feature
of templates:

• the generic code can be syntactically correct,
• but invalid for certain concrete types.

This mechanism explains why template-related errors can be long and complex: the compiler tries to instantiate
the code with a given type and fails when a required operation does not exist.

Instantiation of templates
A template is not compiled until it is used. Actual compilation happens during the instantiation, that is, when
the compiler encounters a concrete usage:

add<int>(2, 3);
add<float>(1.5f, 2.5f);

Each instantiation generates:

• a different function for each type,
• or a different type for each combination of template parameters.

Thus:

Box<int>
Box<float>

are two distinct types, with no inheritance relationship between them.

82

https://en.wikipedia.org/wiki/Duck_typing

Important consequence: code visible at compile time
For the compiler to instantiate a template, it must have access to the complete implementation of the template at
compile time.

This has a major consequence for the organization of files.

Templates and header files (.hpp)
Unlike regular functions and classes, the body of templates must be visible wherever they are used. That is
why:

• templates are defined in header files (.hpp),
• they are typically not separated into .hpp / .cpp.

Correct example :

// vec.hpp
#pragma once

template <typename T>
T add(T a, T b) {

return a + b;
}

// main.cpp
#include "vec.hpp"

int main() {
int a = add(2, 3);

}

If the body of the template were placed in a .cpp, the compiler would not be able to generate the specialized
versions, because the implementation would not be visible at instantiation time.

Why templates cannot be compiled separately
In ordinary code:

• the compiler produces an object file (.o) from a .cpp,
• the linker then assembles the symbols.

With templates:

• the generated code depends on the types used,
• these types are known only at the point of use.

The compiler therefore cannot produce in advance a single generic version of the template. It must see both:

• the definition of the template,
• and the concrete type used.

Exceptions and special cases
There exist advanced techniques (explicit instantiation) allowing partial separation of the implementation, but they
remain complex; in practice, the simple rule is:

Every template must be fully defined in a header file.

83

Summary of key principles
• Templates use a static duck typing: the constraints on types are implicit.
• Errors are detected at instantiation, not at definition.
• Each combination of template parameters generates specific code.
• The compiler must see the complete implementation of the template.
• Templates are therefore defined in .hpp files, not .cpp.

These rules explain both the power and the complexity of templates in C++.

6.3 Static metaprogramming
Static metaprogramming refers to the set of techniques that allow performing calculations at compile time, even
before the program runs. In C++, templates and constexpr expressions allow moving part of the program’s logic
to the compiler. The result is code faster at runtime, because some decisions and some calculations are already
resolved.

General principle
The central idea is the following:

use the compiler as a calculation engine.

Values produced by metaprogramming:

• are known at compile time,
• incur no runtime calculation cost at execution,
• can be used as template parameters, array sizes, or constants.

Metaprogramming with integral template parameters
Untyped template parameters (integers) are the first tool of metaprogramming.

template <int N>
int static_square()
{

return N * N;
}

Usage :

int main()
{

const int a = static_square<5>(); // evaluated at compile time
}

float buffer[static_square<3>()]; // size known at compile time
std::cout « a « std::endl; std::cout « sizeof(buffer) / sizeof(float) « std::endl; }
Here:

• ’static_square<5>() is computed by the compiler,
• no multiplication is performed at run-time.

constexpr : calculations evaluated by the compiler
Since C++11, the keyword constexpr allows explicitly requesting a compile-time evaluation, if the arguments are
constant.

constexpr int square(int N)
{

return N * N;
}

84

The compiler:

• verifies that the expression can be evaluated statically,
• generates a constant if that’s the case.

Comparison with a classic function:

int runtime_square(int N)
{

return N * N;
}

Usage in a template parameter:

template <int N>
void print_value()
{

std::cout << N << std::endl;
}

int main()
{

print_value<square(5)>(); // OK: constant expression
// print_value<runtime_square(5)>(); // ERROR: not constant

}

Recursive calculations at compile time
Templates and constexpr allow writing recursive calculations evaluated at compile time.

Example: factorial calculation.

constexpr int factorial(int N)
{

return (N <= 1) ? 1 : N * factorial(N - 1);
}

Usage as a template parameter:

template <typename T, int N>
struct vecN
{

T data[N];
};

int main()
{

vecN<float, factorial(4)> v;

for (int k = 0; k < factorial(4); ++k)
v.data[k] = static_cast<float>(k);

}

The calculation of 4! is performed entirely at compile time.

Template metaprogramming (historical form)
Before constexpr, metaprogramming relied exclusively on recursive templates.

template <int N>
struct Factorial {

static constexpr int value = N * Factorial<N - 1>::value;
};

template <>
struct Factorial<0> {

static constexpr int value = 1;
};

85

Usage :

int size = Factorial<5>::value; // evaluated at compile time

This technique is more complex and less readable, but it is historically important and still present in some
libraries.

Typical use cases
Static metaprogramming is used for:

• sizes of arrays known at compile time,
• algorithms specialized according to constant parameters,
• conditional code selection (if constexpr in C++17),
• aggressive optimization with no runtime cost,
• generic mathematical structures (vectors, matrices).

Example with if constexpr :

template <typename T>
void process(T v)
{

if constexpr (std::is_integral_v<T>)
std::cout << "Integer" << std::endl;

else
std::cout << "Not integer" << std::endl;

}

Note: `std::is_integral_v` is provided by the header `<type_traits>`.

The non-relevant branch is removed at compile time.

Limits and precautions
• Increases the compile time.

• It can make errors more difficult to understand.

• Code can become less readable if metaprogramming is excessive.

6.4 Type deduction in templates
One of the major goals of generic programming is to make the code both generic and readable. In C++, the
compiler is capable of automatically deducing template parameters in many cases, from the arguments provided
at call time. Understanding when this deduction works — and when it fails — is essential for writing efficient
generic interfaces.

General principle of deduction
When a template is used without explicitly specifying its parameters, the compiler tries to deduce them from the
argument types.

template <typename T>
T add(T a, T b)
{

return a + b;
}

Usage:

int a = add(2, 3); // T deduced as int
float b = add(1.2f, 3.4f); // T deduced as float

Here, the compiler deduces T automatically from the arguments passed to the function.

86

Limits of automatic deduction
Type deduction works only from the function parameters. It does not work from the return type.

template <typename T>
T identity();

This template cannot be called without specifying T, because the compiler has no information to deduce it.

// identity(); // ERROR
identity<int>(); // OK

Problematic example: generic dot product
Consider a generic dot product function:

template <typename TYPE_INPUT, typename TYPE_OUTPUT, int SIZE>
TYPE_OUTPUT dot(TYPE_INPUT const& a, TYPE_INPUT const& b)
{

TYPE_OUTPUT val = 0;
for (int k = 0; k < SIZE; ++k)

val += a[k] * b[k];
return val;

}

Usage:

vecN<float,3> v0, v1;

// Heavy and hard-to-read call
float p = dot<vecN<float,3>, float, 3>(v0, v1);

In this case:

• TYPE_INPUT, TYPE_OUTPUT and SIZE cannot be automatically deduced,
• the call becomes verbose and hard to read.

Why deduction fails here
Deduction fails because:

• TYPE_OUTPUT appears only in the return type,
• SIZE appears only as a template parameter, not in the function arguments.

The compiler can deduce a template parameter only if it is directly tied to the argument types.

Expose template parameters in the types
One solution is to expose explicitly the template parameters in the generic class.

template <typename TYPE, int SIZE>
class vecN
{

public:
using value_type = TYPE;
static constexpr int size() { return SIZE; }

TYPE& operator[](int index);
TYPE const& operator[](int index) const;

private:
TYPE data[SIZE];

};

We can then write a much more readable function:

87

template <typename V>
typename V::value_type dot(V const& a, V const& b)
{

typename V::value_type val = 0; for (int k = 0; k < V::size(); ++k) val += a[k] * b[k]; return val; }

Usage:

```cpp
float p = dot(v0, v1); // types and size inferred automatically

Here:

• V is deduced as vecN<float,3>,
• the return type is extracted via V::value_type,
• the size is known at compile time via V::size().

Access to internal types: typename
When a type depends on a template parameter, it must be preceded by typename to indicate to the compiler that it is
indeed a type.

typename V::value_type

Without typename, the compiler cannot know whether value_type is a type or a static value.

Partial deduction and default parameters
Templates can also use default parameters to reduce verbosity:

template <typename T, int N = 3>
struct vecN;

This mechanism allows simplifying certain usages, but does not replace good interface design.

Deduction with auto and C++17+
Since C++17, auto can be used to deduce the return type of a template function:

template <typename V>
auto norm2(V const& v)
{

auto val = typename V::value_type{};
for (int k = 0; k < V::size(); ++k)

val += v[k] * v[k];
return val;

}

This improves readability while preserving generality.

6.5 Template specialization
Template specialization allows adapting the behavior of a generic template to a particular case, without modifying
the general implementation. It is used when, for a type or parameter in particular, the default behavior is not
appropriate, inefficient, or incorrect.

Specialization is a mechanism resolved at compile time, and is an integral part of generic programming in
C++.

88



General principle
We start by defining a generic template (the general case), then provide a specialized implementation for a given
type or value.

template <typename T>
struct Printer
{

static void print(T const& v)
{

std::cout << v << std::endl;
}

};

This template works for any type compatible with operator<<.

Complete specialization of a template
A complete specialization replaces entirely the template’s implementation for a specific type.

template <>
struct Printer<bool>
{

static void print(bool v)
{

std::cout << (v ? "true" : "false") << std::endl;
}

};

Usage:

Printer<int>::print(5); // uses the generic version
Printer<bool>::print(true); // uses the specialization

The compiler automatically selects the most specific version available.

Specialization of function templates
Function templates can also be specialized, but their use is more delicate.

template <typename T>
void display(T v)
{

std::cout << v << std::endl;
}

template <> void display(bool v) { std::cout « (v ? “true” : “false”) « std::endl; }

Here too, the specialized version is used when `T = bool`.

### Partial specialization (class templates)

The **partial specialization** allows you to specialize a template for **a family of types**, but it is only
allowed **for class templates**, not for functions.

Example: specialization according to an integer parameter.

```cpp
template <typename T, int N>
struct Array
{

T data[N];
};

Partial specialization for N = 0 :

template <typename T>

89

struct Array<T, 0>
{

// empty array
};

Here, all types Array<T,0> use this specific version.

Partial specialization with pointer types
Another classic example:

template <typename T>
struct is_pointer
{

static constexpr bool value = false;
};

template <typename T>
struct is_pointer<T*>
{

static constexpr bool value = true;
};

Usage:

is_pointer<int>::value; // false
is_pointer<int*>::value; // true

This type of specialization is widely used in the STL (std::is_pointer, std::is_integral, etc.).

Full specialization (or complete)
The full specialization consists of providing a specific implementation for an entirely fixed combination of tem-
plate parameters (types and/or values). For this exact combination, the generic template is not used at all: the
specialization replaces it entirely.

In the context of generic vectors, this enables, for example:

• to optimize a particular case (the current dimension),
• to define a different behavior for a given size,
• or to adapt an internal representation.

Example: generic fixed-size vector
We first define a generic template for a vector of arbitrary size known at compile time.

template <typename T, int N>
struct vec
{

T data[N];

T& operator[](int i) { return data[i]; }
T const& operator[](int i) const { return data[i]; }

};

This template works for any type T and any size N.

Full specialization for a 2D vector
Suppose we want special handling for 2D vectors, for example:

• direct access via x and y,
• more readable code,
• possibly more optimizable.

We then define a full specialization :

90

template <typename T>
struct vec<T, 2>
{

T x, y;

vec() : x(0), y(0) {}
vec(T x_, T y_) : x(x_), y(y_) {}

T& operator[](int i)
{

return (i == 0) ? x : y;
}

T const& operator[](int i) const
{

return (i == 0) ? x : y;
}

};

Here:

• vec<T,2> is a completely different type from vec<T,N>,
• the array data[N] no longer exists,
• the behavior is completely redefined for N = 2.

Usage

vec<float, 3> v3;
v3[0] = 1.0f;
v3[1] = 2.0f;
v3[2] = 3.0f;

vec<float, 2> v2(1.0f, 4.0f); std::cout « v2[0] « ” ” « v2[1] « std::endl;

* `vec<float,3>` uses the **generic template**,
* `vec<float,2>` uses the **full specialization**.

The choice is made **at compile time**, with no runtime test.

Full specialization for a specific type and size

It is also possible to specialize for **a specific type and size**.

```cpp
template <>
struct vec<float, 3>
{

float x, y, z;

vec() : x(0.f), y(0.f), z(0.f) {}
vec(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

float norm2() const
{

return x*x + y*y + z*z;
}

};

Usage:

vec<float,3> v(1.f, 2.f, 3.f);
std::cout << v.norm2() << std::endl;

Here:

• this version is used only for vec<float,3>,

91



• all other combinations (vec<double,3>, vec<float,4>, etc.) use the generic template.

Comparison with partial specialization
• Full specialization All template parameters are fixed (vec<float,3>). → a unique case, behavior completely
redefined.

• Partial specializationOnly a part of the parameters is fixed (vec<T,2>). → a family of types sharing a specific
behavior.

6.6 Priority between specialization and overloading
It is common to confuse overloading and template specialization, but these are two distinct mechanisms that
come into play at different times during compilation. Understanding their order of precedence is essential to
avoid surprising behaviors.

The key idea is the following:

Overloading is resolved before template specialization.

In other words, the compiler first chooses which function to call, and only then which template version to
instantiate.

Step 1: overload resolution (overloading)
When several functions have the same name, the compiler starts by applying the classic overload rules:

• exact type matches,
• implicit conversions,
• templates vs non-template functions.

Example:

void display(int x)
{

std::cout << "normal int function\n";
}

template <typename T>
void display(T x)
{

std::cout << "generic template\n";
}

Call:

display(3);

Result:

normal int function

A non-template function is always prioritized over a function template if it matches exactly.

Step 2: template selection
If no non-template function matches, the compiler considers the template functions and tries to deduce the param-
eters.

template <typename T>
void display(T x)
{

std::cout << "generic template\n";
}

92



display(3.5); // T = double

Here, the template is selected because no non-template function matches.

Step 3: template specialization
Once a template has been chosen, the compiler searches for whether there exists a more specific specialization
for the deduced parameters.

template <typename T>
void display(T x)
{

std::cout << "template generique\n";
}

template <>
void display<bool>(bool x)
{

std::cout << "specialisation bool\n";
}

Calls :

display(5); // template générique
display(true); // spécialisation bool

Result :

template generique
specialisation bool

The specialization does not participate in overload resolution. It is selected after the generic template has
been chosen.

Subtle case: specialization vs overloading
Now consider :

template <typename T>
void display(T x)
{

std::cout << "template generique\n";
}

template <>
void display<int>(int x)
{

std::cout << "specialisation int\n";
}

void display(int x)
{

std::cout << "fonction normale int\n";
}

Call :

display(3);

Result :

fonction normale int

Explanation :

1. the compiler sees a non-template function display(int) → priority,

93



2. the template is not even considered,
3. the specialization of the template is ignored.

A specialization can never beat a non-template overload.

Why this behavior?
Because :

• overload resolution is a syntactic and local decision,
• specialization is an internal to the template decision,
• mixing the two levels would make compilation ambiguous.

C++ thus imposes a strict hierarchy.

Priority summary (exact order)
When calling a function :

1. Selection of candidate functions (name, scope).

2. Overload resolution :

• non-template functions,
• then template functions.

3. If a template is chosen :

• selection of the most specific specialization.

4. Instantiation of the corresponding code.

Practical rule to remember
Overloading chooses the function. Specialization chooses the implementation of the template.

Best practices
• Use the overloading to offer different interfaces.
• Use the specialization to tailor internal behavior to a template.
• Avoid mixing overloading and specialization on the same name without a clear reason.

6.7 Aliases
Type aliases in templates (typedef and using)
Type aliases allow giving a more readable or more expressive name to a type, often complex. They play a cen-
tral role in generic programming, as they facilitate the type deduction, the writing of generic functions and the
readability of interfaces.

In C++, there are two equivalent mechanisms:

• typedef (historical),
• using (modern, recommended).

Alias with typedef (historical form)

typedef unsigned int uint;

This mechanism works, but quickly becomes hard to read with complex types, especially in the presence of
templates.

94



Alias with using (modern form)
Since C++11, we prefer to use using, clearer and more powerful.

using uint = unsigned int;

This syntax is equivalent to typedef, but much more readable, especially with templates.

Aliases in a template class
Aliases are very often used inside template classes to expose their internal parameters.

Example with a generic vector :

template <typename T, int N>
class vec
{

public:
using value_type = T;
static constexpr int size() { return N; }

T& operator[](int i) { return data[i]; }
T const& operator[](int i) const { return data[i]; }

private:
T data[N];

};

Here:

• vec<T,N>::value_type gives access to the stored type,
• vec<T,N>::size() gives access to the size known at compile time.

These aliases make the class self-descriptive and facilitate its use in generic code.

Using aliases in template functions
Thanks to aliases, we can write generic functions without explicitly knowing the template parameters.

template <typename V>
typename V::value_type sum(V const& v)
{

typename V::value_type s = 0;
for (int i = 0; i < V::size(); ++i)

s += v[i];
return s;

}

Usage:

vec<float,3> v;
v[0] = 1.0f; v[1] = 2.0f; v[2] = 3.0f;

float s = sum(v);

Here:

• the return type is automatically deduced via value_type,
• the function works for any type of vector compatible.

Aliases and dependent types (typename)
When accessing a dependent alias from a template parameter, it is necessary to use the keyword typename to indicate
that it is indeed a type.

typename V::value_type

Without typename, the compiler cannot know whether value_type is a type or a static member.

95



Alias templates (templated aliases)
The aliases themselves can be templates, which helps simplify very complex types.

template <typename T>
using vec3 = vec<T, 3>;

Usage:

vec3<float> a;
vec3<double> b;

Here:

• vec3<float> is equivalent to vec<float,3>,
• the alias greatly improves readability.

Aliases and consistency of generic interfaces
Aliases are widely used in the STL:

• value_type,
• iterator,
• reference,
• const_reference.

Adhering to these conventions makes your classes compatible with generic algorithms.
Example:

template <typename Container>
void print_container(Container const& c)
{

for (typename Container::value_type const& v : c)
std::cout << v << " ";

}

96



7 Hardware view
This chapter offers a simplified yet coherent view of the hardware underlying the execution of a C/C++ program.
The objective is not to delve into fine electronics, but to understand how the code is physically executed, and why
certain notions (memory, cache, alignment, performance) are crucial in computer graphics and scientific computing.

7.1 Transistor principle
The transistor is the fundamental element of any modern electronic circuit. A processor today contains billions
of transistors, each behaving as an electronically controllable switch.

Fundamental role
A transistor can be seen as :

• an open or closed switch,
• controlled by an electrical signal.

Classically, we associate:

• off state → 0

• on state → 1

These two states allow representing the binary information.

Physical principle of the transistor

Physical principle of the transistor
The transistor is above all a physical object, whose operation rests on the electrical properties of matter at the
microscopic scale. Understanding its physical principle helps grasp how a continuous phenomenon (voltages,
electric fields, electrons) is exploited to produce a discrete logic (0 / 1).

Silicon and electrical conduction

The central material of modern electronics is the silicon, a crystal whose electrons are bound to atoms by
covalent bonds. In its pure state:

• silicon conducts current very poorly,
• it does not behave neither as a perfect insulator nor as a good conductor.

Its conductivity can however be controlled thanks to doping.

Doping and charge carriers

Doping consists of introducing a very small amount of foreign atoms into the silicon crystal.

• N-type doping Atoms with an excess electron → appearance of free electrons (negative charges)

• P-type doping Atoms with a missing electron → appearance of holes (effective positive charges)

These charge carriers are mobile under the effect of an electric field, which allows the passage of current.

97



PN junction and current control

When a P-doped region is brought into contact with an N-doped region, a PN junction forms.
At the interface :

• electrons and holes recombine,
• a charge-depleted zone appears,
• this zone creates a potential barrier.

According to the applied voltage :

• the barrier is lowered → current allowed,
• the barrier is strengthened → current blocked.

This is the first physical building block of the electrical control.

The MOSFET transistor: electric field rather than current

Modern processors use almost exclusively MOSFET transistors – Metal Oxide Semiconductor Field Effect
Transistor.

• Metal-Oxide-Semiconductor (MOS): Describes the physical structure (an insulated metal gate from the
semiconductor by an oxide layer).

• Field-Effect (Effet de Champ): Describes the control principle. It is an electric field (created by a voltage)
that controls the passage of current, and not a current (unlike the bipolar transistor).

Unlike older transistors, they are controlled by an electric field (a voltage), and not by a current, which signifi-
cantly reduces their power consumption.

A MOSFET consists of four main terminals:

1. Source (S): The entry of electrons.
2. Drain (D): The exit of electrons.
3. Gate (G): The control electrode.
4. Substrate (Body): The body of the transistor.

Key Innovation: The Gate is electrically isolated from the channel by an extremely thin oxide layer.

3. The Faucet Analogy To understand how it works, visualize a water faucet:

MOSFET Component Faucet Analogy Role

Source Water inlet Provides the current.
Drain Water outlet Receives the current.
Gate Handle Controls the flow without touching the water.
Voltage Force on the handle The opening command.

4. The Switching Physics: Threshold Voltage () The passage of current is not instantaneous. It relies on a
phenomenon called inversion.

• At rest (): The transistor is a barrier. No current flows between Source and Drain.
• Under voltage (): The positive voltage on the gate acts like a magnet. It attracts minority electrons from the
substrate toward the surface, just under the oxide.

• The Threshold (): When the voltage exceeds a critical value called Threshold Voltage (), the electron
concentration is sufficient to form a “bridge” conductive between the Source and the Drain: the channel is
created.

98



5. Operating Regimes (Simplified Mathematics) The drain current (I_D) behavior follows three regimes
depending on the applied voltages:

1. Cut-off regime (Blocking):

•
• The faucet is closed. .
• Logical interpretation: State 0.

2. Linear (Ohmic) regime:

• The channel is open, but theDrain-Source potential difference is small. The transistor acts as a simple resistor.
• I_D is proportional to the applied voltage.

3. Saturation regime:

• The channel is fully conducting and the current is maximal and constant for a given gate voltage.
• This is the regime used for amplification, or the “fully on” state in digital logic.
• Logical interpretation: State 1.

6. From the Physical Phenomenon to the Logical Bit In computing, these complex behaviors are abstracted
to keep only two stable states:

• Low voltage ($ < V_{th}$): Blocked transistor Bit 0
• High voltage ($ > V_{th}$): Saturated transistor Bit 1

However, at the current nanometer scale (transistors of a few nanometers), physical constraints reappear:

• Leakage currents: Even blocked, the transistor lets through a tiny current (tunneling effect), which heats
the processor.

• Thermal dissipation: This is the main limit to increasing clock frequencies (GHz).

Nanometer-scale and physical constraints

Current transistors measure a few nanometers. At this scale:

• quantum effects become significant,
• leakage currents appear,
• thermal dissipation becomes critical.

These constraints explain:

• the frequency limits of processors,
• the necessity of parallelism,
• the importance of energy efficiency.

From transistor to logic
By combining several transistors, we build:

• logic gates (AND, OR, NOT, XOR),

• then more complex circuits :

– adders,
– multiplexers,
– registers,
– calculation units.

Conceptual example :

• an integer addition is performed by a cascade of logic gates,
• each gate is itself made of transistors.

Thus, any C++ instruction (addition, comparison, conditional jump) ultimately translates to transistor switch-
ing.

99



7.2 Basic structure of memory and arithmetic operations
Principles of memory
Storing a memory element relies on a very precise organization of transistors, different depending on the type of
memory. Here is a progressive explanation, starting from the bit up to memories used in a CPU.

7.3 Minimal organization: storing a bit
A bit must:

• represent 0 or 1,
• remain stable over time,
• be readable and writable.

There are several ways to store information using transistors:

1. Static memory (SRAM)
The SRAM (Static Random Access Memory) is used for:

• the processor’s registers,
• the L1, L2 and L3 caches.

Typical access time: 0.3 to 2 ns
It is:

• extremely fast,
• non-refreshing (as long as it is powered),
• very stable,
• but area-intensive, as each bit uses several transistors.

General principle

An SRAM bit is stored using a bistable electronic latch, implemented with transistors.
Classical organization:

• 6 transistors per bit (6T cell) :

– 4 transistors form two cross-coupled inverters,
– 2 transistors serve for read/write access.

Operation:

• the inverters hold each other in a stable state,
• the state corresponds to 0 or 1,
• as long as power is present, the state is preserved.

Read:

• non-destructive,
• very fast.

Write:

• temporarily forces a state onto the latch.

Thus SRAM stores information in the form of an active electrical equilibrium between transistors.

100



2. Dynamic RAM (DRAM)
Dynamic RAM (DRAM) constitutes the central memory of a computer (RAM).

Typical access time: 50 to 100 ns
It is:

• slower than SRAM,
• volatile,
• requires a periodic refresh,
• much denser (fewer transistors per bit).

General principle

A DRAM bit is stored as an electrical charge.
Classic organization:

• 1 transistor + 1 capacitor per bit (1T1C cell).

Operation:

• the capacitor stores a charge (1) or is empty (0),
• the transistor controls access to the cell.

Read:

• the charge is measured,
• the read is destructive (the capacitor discharges),
• the value must be rewritten immediately.

Refresh:

• charges leak naturally,
• each cell must be read and rewritten periodically (about every 64 ms).

DRAM stores information in the form of a passive charge, hence the need for refresh.

3. Flash memory
Flash memory is a non-volatile memory used for:

• SSDs,
• USB flash drives,
• memory cards,
• firmware storage (BIOS, microcontrollers).

It is:

• persistent without power,
• slower to write than RAM,
• limited in the number of write cycles,
• very dense.

Typical access time: 50 to 100 µs (microseconds) for reads, 200 µs to a few ms for writes

General principle

A flash memory bit is stored using a floating-gate transistor.
Organization:

• the cell is a modified MOS transistor,
• it has an electrically isolated floating gate.

101



Operation:

• writing involves injecting electrons into the floating gate using a high voltage,
• the electrons remain trapped in the insulating material,
• the presence or absence of charge changes the transistor’s behavior.

Read:

• non-destructive,
• based on measuring the conduction threshold.

Erasing:

• is performed in whole blocks,
• also requires high voltages.

Flash memory stores information as physically trapped charges, which explains its persistence without power.

Concise comparison

Memory Type Volatile Transistors / bit Refresh Main Use

SRAM yes ~6 no registers, caches
DRAM yes 1 + 1 capacitor yes central memory
Flash no 1 (specific) no persistent storage

Principles of arithmetic operations

From C++ code to machine instruction

An arithmetic operation written in C++ is an abstract expression:

c = a + b;

For the processor, this corresponds to a well-defined sequence:

1. load a and b from memory into registers,
2. activate the arithmetic unit with the requested operation,
3. produce a binary result,
4. store the result in a register or in memory.

The processor never ‘understands’ variables or C++ types: it manipulates only registers, opcodes, and bits.

Central role of the ALU

Arithmetic and logical operations are performed by the ALU (Arithmetic Logic Unit).
Main functions of the ALU:

• addition and subtraction,
• logical operations (AND, OR, XOR),
• comparisons,
• binary shifts.

All these operations rely on:

• combinational circuits,
• composed of logic gates,
• themselves built from transistors.

The ALU receives:

• two operands from the registers,
• an opcode indicating the operation to perform,
• and produces a result as well as status flags.

102



Subtraction, comparisons and internal logic

In the ALU:

• the subtraction is implemented as a modified addition,
• the comparisons exploit the result of an internal subtraction,
• relational operators (<, >, ==) produce only a single logic bit.

Conceptual example:

if (a < b) { ... }

In hardware:

• the processor computes a - b,
• observes the sign or the carry flag,
• and deduces the result of the test.

Multiplication and division: composite operations

Unlike addition, multiplication and division:

• require several internal steps,
• deploy more complex circuits,
• and are therefore more costly in cycles.

Multiplication relies on:

• shifts,
• partial additions,
• or highly optimized specialized units.

Division:

• is generally iterative,
• and constitutes one of the slowest arithmetic operations.

Operations on floating-point numbers

Floating-point calculations are handled by a separate unit: the FPU.
It performs:

• alignment of exponents,
• operation on the mantissas,
• normalization of the result,
• rounding according to the IEEE standard.

These operations are more costly than those on integers, but fully managed by hardware.

SIMD vector instructions

Modern processors have vector units capable of applying the same operation on multiple data elements simul-
taneously.

Principle:

• one instruction,
• several operands processed in parallel.

It is a direct extension of the basic arithmetic operations, used for:

• computer graphics,
• signal processing,
• scientific computing.

103



Scheduling and pipelining

Arithmetic operations are not executed in isolation:

• they are pipelined,
• reordered,
• executed in parallel when possible.

Thus:

• several additions may be in progress simultaneously,
• as long as data dependencies are respected.

Real cost of an operation

In a real program:

• thememory access time is often dominant,
• pure arithmetic computation is rarely the bottleneck.

Optimizing performance often comes down to:

• reducing memory accesses,
• improving data locality,
• exploiting parallelism.

Key idea to remember
Arithmetic operations are elementary hardware building blocks, orchestrated by the processor via
the ALU, the FPU and vector units. C++ code expresses logical calculations, but their execution relies
on scheduling, parallelism, and efficient data access.

7.4 Cache memory concept
Fundamental problem: memory latency
Accessing main memory (RAM) is:

• much slower than accessing registers or compute units.

Order of magnitude:

• register: ~1 cycle
• L1 cache: ~3–5 cycles
• L2 cache: ~10 cycles
• RAM: ~100–300 cycles

Without intermediate mechanisms, the CPU would spend its time waiting for memory.

Cache principle
Thememory cache is an intermediate memory:

• smaller than RAM,
• much faster,
• integrated into the processor.

It stores copies of blocks of memory recently used.

104



Cache hierarchy
We typically distinguish:

• L1: very small, very fast, per core,
• L2: larger, somewhat slower,
• L3: shared between cores.

Each level acts as a buffer toward the lower level.

Temporal and spatial locality
The cache relies on two fundamental principles:

• Temporal locality A data item used recently is likely to be reused.

• Spatial locality If you access a memory address, neighboring addresses are likely to be used.

That’s why:

• contiguous arrays,
• std::vector,
• sequential traversals,

aremuch faster than random accesses.

Link to C++ programming
Examples of cache-friendly code:

for(int i = 0; i < N; ++i)
sum += array[i];

Unfavorable examples:

for(int i = 0; i < N; ++i)
sum += array[random_index[i]];

In computer graphics, this point is crucial:

• vertex processing,
• particle simulation,
• traversal of GPU/CPU buffers.

105



8 Development Methodologies and Best
Practices

This chapter presents the fundamental methodological principles enabling the production of C++ code:

• readable,
• robust,
• testable,
• maintainable,

all while respecting the language’s performance and low-level constraints.
These principles apply just as well to small programs as to complex projects (simulation, graphics engine,

parallel computing).

8.1 Code Quality: Concrete Objectives
Code quality is not measured by perceived elegance, but by practical criteria:

• Readability: the code is understandable without excessive effort.
• Locality: understanding a function does not require exploring the entire project.
• Robustness: errors are detected and handled explicitly.
• Testability: the code can be validated automatically.
• Extensibility: future modifications are possible without massive rewrites.
• Measured performance: optimization guided by measurements, not by intuition.

Note that when working with others, code readability should be the priority. Readable code:

• facilitates code reading and code reviews,
• reduces errors during modifications,
• speeds up the onboarding of new contributors,
• allows reasoning and testing more easily.

In most cases, one should favor readability and simplicity over premature micro-optimizations. Efficiency can
be pursued later, in a targeted and measured way, when a performance bottleneck is evident.

Best practices for readability: explicit names, short functions, comments when the code is not self-documenting,
consistent formatting, and systematic code reviews.

8.2 General Principles: KISS, DRY, YAGNI
KISS – Keep It Simple, Stupid
Simple code is more reliable than complex code.

• Prefer a direct implementation over premature abstraction.
• Avoid “clever” constructions that are hard to explain.
• A function should ideally fit on one screen.

Example (KISS) :

// Version condensée et moins lisible : logique imbriquée, calcul d'index
// difficile à suivre, tout est condensé sur quelques lignes.
int count_neighbors_ugly(const std::vector<int>& grid, size_t w, size_t h,

size_t x, size_t y)
{

int c = 0;
// balayer un rectangle 3x3 centré sur (x,y) en jouant sur les bornes
size_t start = (y ? y - 1 : 0) * w + (x ? x - 1 : 0);
size_t end_y = (y + 1 < h ? y + 1 : h - 1);

106



size_t end_x = (x + 1 < w ? x + 1 : w - 1);
for (size_t idx = start;; ++idx) {

size_t cx = idx % w;
size_t cy = idx / w;
if (!(cx == x && cy == y)) c += grid[idx];
if (cy == end_y && cx == end_x) break; // logique subtle

}
return c;

}

// Version claire et simple : fonctions auxiliaires et boucles explicites

inline bool in_bounds(size_t x, size_t y, size_t w, size_t h) { return x < w && y < h; } inline int at(const
std::vector& g, size_t w, size_t x, size_t y) { return g[y * w + x]; }

int count_neighbors(const std::vector& grid, size_t w, size_t h, size_t x, size_t y) { int c = 0; size_t y0 = (y >
0) ? y - 1 : 0; size_t y1 = (y + 1 < h) ? y + 1 : h - 1; size_t x0 = (x > 0) ? x - 1 : 0; size_t x1 = (x + 1 < w) ? x + 1 :
w - 1;

for (size_t yy = y0; yy <= y1; ++yy) {
for (size_t xx = x0; xx <= x1; ++xx) {

if (xx == x && yy == y) continue; // ignore the central cell
c += at(grid, w, xx, yy);

}
}
return c;

}

### DRY -- *Don't Repeat Yourself*

A piece of logic should exist in only one place.

Note:
eliminating any duplication can lead to unnecessary abstractions.
A local and simple duplication is sometimes preferable to a complex generalization.

Example (DRY) :

```cpp
// Duplication (worse) : two very similar functions
double average_int(const std::vector<int>& v) {

if (v.empty()) return 0.0;
long sum = 0;
for (int x : v) sum += x;
return double(sum) / v.size();

}

double average_double(const std::vector<double>& v) {
if (v.empty()) return 0.0;
double sum = 0;
for (double x : v) sum += x;
return sum / v.size();

}

// Refactoring (DRY) : a generic implementation avoids duplication
template<typename T>
double average(const std::vector<T>& v) {

if (v.empty()) return 0.0;
long double sum = 0;
for (T x : v) sum += x;
return double(sum / v.size());

}

// Usage :
// std::vector<int> vi = {1,2,3};
// std::vector<double> vd = {1.0,2.0,3.0};
// double a1 = average(vi); // works for int
// double a2 = average(vd); // works for double

107

YAGNI – You Aren’t Gonna Need It
Do not implement features “just in case” if they are not necessary.

This principle is particularly important in C++, where: - templates, - generics, - and metaprogramming
can encourage excessive complexity too early.
Example (YAGNI) :

// Prematurely generalized (YAGNI)
template <typename T = float, int N = 3>
struct vec { T data[N]; };

// Simple and sufficient version for everyday use
struct vec3 { float x, y, z; };

8.3 Invariants, assertions et contrat de fonction
A robust program does not settle for “working in the normal cases”: it explicitly expresses its assumptions and
verifies that they are respected.

These assumptions constitute what is called the code’s contract.

Why talk about a contract?
When a function is called, two viewpoints exist:

• the caller’s perspective “What am I allowed to pass to this function?”

• the function’s perspective “What do I guarantee in return?”

If these rules are implicit or only “in the developer’s head,” the code becomes fragile:

• silent errors,
• indeterminate behaviors,
• hard-to-diagnose bugs.

The contract allows us to formalize these rules. The set of these rules is what we call contract-based program-
ming.

The three key notions of the contract
We distinguish three types of complementary rules.

1. Preconditions

A Precondition is a condition that must be true before the call of a function.

• It describes what the function expects.
• It is the caller’s responsibility.

Examples:

• an index must be valid,
• a pointer must not be null,
• a divisor must be non-zero.

108

2. Postconditions

A Postcondition is a condition that must be true after the function executes.

• It describes what the function guarantees.
• It is the function’s responsibility.

Examples:

• the size of a container has increased,
• a returned value lies within an interval,
• an internal state has been updated correctly.

3. Invariants

An Invariant is a property that must be always true for a valid object.

• It is established by the constructor.
• It must be preserved by all public methods.

Examples:

• 0 ≤ size ≤ capacity,
• a radius is always strictly positive,
• two member pointers are either both valid, or both null.

Conceptual Illustration: stack
Before looking at C++, here is a conceptual view of the contract of a stack.

Entity : Stack (Stack)

Invariant :
0 <= size <= capacity

Constructor(capacity):
establishes the invariant
size := 0
capacity := capacity

push(value):
precondition : size < capacity
postcondition : top == value, size increased by 1

pop():
precondition : size > 0
postcondition : size decreased by 1

The invariant must be true after every public call, regardless of the sequence of operations.

Runtime assertions (assert)
Assertions allow verifying these rules during execution, mainly in the development phase.

In C++, we use assert to detect programming errors.

#include <cassert>

float safe_div(float a, float b)
{

assert(b != 0.0f && "Division by zero");
return a / b;

}

Here:

• b != 0.0f is a precondition,
• the assertion documents and checks this hypothesis.

109

What are asserts for?

Assertions allow you to:

• document the internal assumptions of the code,
• quickly detect logical errors,
• stop the program at the exact point of the problem during debugging.

They are therefore a development tool, not a user-facing error-handling mechanism.

Best practices with assert

• use assert for programming errors. The asserts are theoretically “useless” for the proper functioning of
the program; they only serve to facilitate programming by detecting unexpected/unplanned cases that should
never happen.

• do not use assert for:

– missing files,
– invalid user input,
– recoverable errors

• never write side effects:

assert(++i < 10); // forbidden
// Here the value of i is modified after the execution of assert.
// When compiling in "release" mode, the assertion is not executed, and the value of i will be different in

the program.

• provide an explicit message:

assert(ptr && "ptr must not be null");

Debug vs Release mode

• In debug: the asserts are active
• In release: they are removed (NDEBUG)

Note: The program should never depend on assertions to function correctly.

Compile-time Assertions (static_assert)
Some rules can be verified before even executing, at compile time.

That is the role of static_assert.

#include <type_traits>

template <typename T>
T square(T x)
{

static_assert(std::is_arithmetic_v<T>,
"square expects an arithmetic type");

return x * x;
}

Here:

• the constraint is checked at compile time,
• a misuse prevents the generation of the executable.

110

When to use static_assert?

• sizes known at compile time,
• constraints on template types,
• structural assumptions impossible to verify at runtime.

General rule: prefer compile-time checks when possible.

Complete example: stack with invariant and assertions

#include <cassert>
#include <vector>

struct Stack {
std::vector<int> data;
size_t capacity;

// Invariant :
// 0 <= data.size() <= capacity

explicit Stack(size_t cap) : capacity(cap)
{

assert(capacity > 0 && "capacity must be positive");
}

void push(int v)
{

// precondition
assert(data.size() < capacity && "push: stack is full");

data.push_back(v);

// postcondition
assert(data.back() == v && "push: top is incorrect");

}

int pop()
{

// precondition
assert(!data.empty() && "pop: stack is empty");

int v = data.back();
data.pop_back();

// invariant always holds
assert(data.size() <= capacity && "invariant violated");

return v;
}

};

Summary
• A contract describes what the code expects and guarantees.

• The preconditions are the caller’s responsibility.

• The postconditions are the function’s responsibility.

• The invariants define the valid states of an object.

• assert verifies the contract at runtime (debug).

• static_assert verifies the contract at compile time.

• Used correctly, they make the code:

– safer,

111

– more readable,
– and easier to maintain.

Alternatives to asserts
The function assert remains quite limited in terms of functionality. Alternative tools can help express and verify
contracts in a more readable, safe, and maintainable way for large-scale code:

• GSL (Guideline Support Library): provides Expects() / Ensures() (macros or functions) to document pre/-
postconditions, as well as not_null<T> and span<T> for safe pointers and views.

• Result types (expected/Outcome): use tl::expected / Outcome or std::expected when available to explicitly
represent recoverable errors instead of exceptions or magic codes.

• Concepts & static_assert / constexpr: move the checks to compile time when possible (templates, type
constraints), reducing the need for runtime assertions.

• Contract libraries: Boost.Contract and other frameworks offer richer require/ensure/invariant annotations
(contracts that can be activated/deactivated, centralized diagnostics).

• Lightweight annotations (Expects/Ensures): define wrappers Expects(condition) to standardize messages
and enable different behaviors depending on configuration (throw, abort, log).

• Supplementary tools: sanitizers (ASan/UBSan/TSan) and static analysis (clang-tidy, cppcheck) detect classes
of errors that assertions alone do not cover.

8.4 Tests and Test-Driven Development (TDD)
A program may seem correct on a few simple examples and yet be wrong in edge cases or after later modifications.
The tests allow automatically verifying that the code respects its expected behavior, and especially that this behavior
remains correct over time.

Testing is not about proving that the program is perfect, but about reducing the risk of error and detecting
problems as early as possible.

Why write tests?
Tests are useful when they allow you to:

• detect an error before the end user,
• avoid regressions during modification or refactoring,
• document the expected behavior of the code in an executable form,
• facilitate evolving the code with confidence.

In a real project, tests are often run automatically at every change (continuous integration).

What makes a good test?
A good test is:

• deterministic: it always produces the same result under the same conditions,
• fast: it should be able to be run frequently,
• isolated: it does not depend on hidden global state,
• clear: it is easy to understand what is being tested and why,
• localized: in case of failure, the cause is quickly identifiable.

Large categories of tests

Unit tests

A unit test checks a function or a class in isolation.

• without I/O,
• without network access,
• without hardware dependencies.

They are fast and very precise.
They are ideal for testing: - mathematical functions, - algorithms, - data structures.

112

Integration tests

An integration test checks the interaction between several components:

• reading files,
• loading resources,
• threads,
• communication between modules.

They are slower but closer to real-world behavior.

Regression tests

A regression test is added after fixing a bug.

• it reproduces a case that has already failed,
• it guarantees that this bug will not reappear.

These tests are extremely valuable in the long term.

Structure of a test: Arrange / Act / Assert
A readable test generally follows the following structure:

1. Arrange: preparation of data,
2. Act: call of the tested code,
3. Assert: verification of the result.

Example:

// Arrange
float x = -1.0f;

// Act
float y = clamp(x, 0.0f, 1.0f);

// Assert
assert(y == 0.0f);

This structure improves readability and maintenance of tests.

Which cases should be tested?
For a given function, it is recommended to test:

1. the nominal case (normal usage),
2. the edge cases (bounds, sizes 0 or 1, extreme values),
3. the error cases (violated preconditions, invalid inputs).

Testing only the nominal case is rarely sufficient.

Minimal test tool (without a framework)
We can write tests with assert, but it is often useful to have more explicit messages, especially for floating points.

#include <iostream>
#include <cmath>
#include <cstdlib>

inline void check(bool cond, const char* msg)
{

if (!cond) {
std::cerr << "[TEST FAILED] " << msg << std::endl;
std::exit(1);

}

113

}

inline void check_near(float a, float b, float eps, const char* msg)
{

if (std::abs(a - b) > eps) {
std::cerr << "[TEST FAILED] " << msg

<< " (a=" << a << ", b=" << b << ")" << std::endl;
std::exit(1);

}
}

8.5 Guided example: unit tests for clamp
Expected specification
The function clamp(x, a, b) :

• returns a if x < a,
• returns b if x > b,
• returns x otherwise.

Precondition: a <= b.

Tests

#include <cassert>

float clamp(float x, float a, float b);

int main()
{

// nominal case
assert(clamp(0.5f, 0.0f, 1.0f) == 0.5f);

// edge cases
assert(clamp(0.0f, 0.0f, 1.0f) == 0.0f);
assert(clamp(1.0f, 0.0f, 1.0f) == 1.0f);

// saturation
assert(clamp(-1.0f, 0.0f, 1.0f) == 0.0f);
assert(clamp(2.0f, 0.0f, 1.0f) == 1.0f);

// violation of precondition (should fail in debug)
// clamp(0.0f, 1.0f, 0.0f);

}

Implementation :

#include <cassert>

float clamp(float x, float a, float b)
{

assert(a <= b && "clamp: intervalle invalide");
if (x < a) return a;
if (x > b) return b;
return x;

}

The precondition here falls under the contract: its violation is a programming error.

114

8.6 Test-Driven Development (TDD)
The TDD is a methodology in which the code is written in response to tests. It aims to transform the functional
requirement into verifiable behavior.

TDD Loop: Red -> Green -> Refactor
1. Red: write a test that fails,
2. Green: write the minimal code to make the test pass,
3. Refactor: improve the code without breaking the tests.

This loop is repeated frequently.

Benefits of TDD
The TDD:

• forces you to clarify the API from the start,
• encourages short and testable functions,
• limits over-engineering (YAGNI),
• makes refactorings much safer.

8.7 TDD Example: Normalization of a 3D vector
Specification

• if v is non-zero, normalize(v) returns a vector of norm 1,
• the direction is preserved,
• precondition: norm(v) > 0.

Step 1: test (Red)

#include <cassert>
#include <cmath>

struct vec3 { float x, y, z; };

float norm(vec3 const& v)
{

return std::sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
}

vec3 normalize(vec3 const& v);

int main()
{

vec3 v{3.0f, 0.0f, 4.0f};
vec3 u = normalize(v);

assert(std::abs(norm(u) - 1.0f) < 1e-6f);

float dot = v.x*u.x + v.y*u.y + v.z*u.z;
assert(dot > 0.0f);

}

Step 2: Minimal implementation (Green)

#include <cassert>
#include <cmath>

vec3 normalize(vec3 const& v)

115

{
float n = norm(v);
assert(n > 0.0f && "normalize: vecteur nul");
return {v.x / n, v.y / n, v.z / n};

}

Step 3: Refactor (Refactor)
Then, you can:

• factorize norm2,
• improve performance,
• add non-regression tests.

Conclusion on tests and TDD
Tests constitute an automatic verification of a function’s contract. TDD provides a simple methodology for
writing code:

define the behavior -> verify it automatically -> improve the implementation with confidence.

Used correctly, tests make code more reliable, more readable, and easier to evolve.

Testing invalid cases
Testing only valid cases is insufficient: robust code must also detect invalid usages correctly. It is therefore
essential to write tests that verify that:

• the violated preconditions are properly detected (assertion, exception, error returned),
• the invalid inputs do not produce silently incorrect results,
• the program fails in a controlled and explicit manner, rather than continuing in an incoherent state.

These negative tests help ensure that the code’s contract is actually respected, and not merely in ideal cases.
They are particularly important during refactorings: an internal change must never turn a detected error into silent
behavior.

According to the chosen error-handling policy, a test may verify:

• that an assertion fails in debug mode,
• that an exception is thrown,
• or that a result type explicitly signals an error.

In practice, testing invalid cases is often as important as testing valid cases, because it is precisely in these
situations that the most costly bugs appear.

Very well. Here is a concrete, pedagogical example, and consistent with your chapter, showing how to test
an invalid case. You can insert it right after the paragraph “Test invalid cases as well”.

I propose two complementary variants:

1. invalid case detected by assert (programming error),
2. invalid case detected by error return (usage error).

Example: testing an invalid case detected by assert
We take back the function normalize(v) seen previously. Its precondition is that the vector must not be null.

vec3 normalize(vec3 const& v)
{

float n = norm(v);
assert(n > 0.0f && "normalize: vecteur nul");
return {v.x / n, v.y / n, v.z / n};

}

It is important to verify that this precondition is indeed detected.

116

// Negative test: precondition violation (should fail in debug)
int main()
{

vec3 zero{0.0f, 0.0f, 0.0f};

// This test is not intended to "pass":
// in debug mode, the assertion should trigger.
// normalize(zero);

}

Note:

• this test is deliberately commented out in a standard test binary,
• it is often activated separately or checked manually,
• its role is to explicitly document the expected behavior in case of invalid usage.

Example: testing an invalid case with explicit error handling
If you want to handle invalid inputs without crashing the program, you can use a result type.

#include <optional>

std::optional<vec3> normalize_safe(vec3 const& v)
{

float n = norm(v);
if (n <= 0.0f)

return std::nullopt;

return vec3{v.x / n, v.y / n, v.z / n};
}

Corresponding test:

#include <cassert>

int main()
{

vec3 zero{0.0f, 0.0f, 0.0f};

auto r = normalize_safe(zero);
assert(!r.has_value()); // the invalid case is indeed detected

}

Here, the test explicitly verifies that:

• the invalid input is recognized,
• no incorrect value is produced.

Creating tests
Creating exhaustive tests is often a repetitive and time-consuming task. For a non-trivial function or API, you
generally need to cover:

• the nominal cases,

• the edge cases,

• invalid inputs,

• and sometimes many parameter combinations.

Moreover, when code evolves (refactoring, API changes, adding parameters), tests must be updated in or-
der to remain consistent with the new contract. This maintenance phase can account for a substantial portion of
development time.

In this context, AI-assisted code generation tools can be used to accelerate and facilitate the setup of test
batteries. They are particularly useful for:

117

• quickly generating systematic unit tests from a clear specification,
• proposing edge or negative tests often overlooked,
• helping to adapt or regenerate tests after a code modification,
• automatically exploring different input combinations.

8.8 Error handling: principles and methodology
A robust program does not merely detect errors: it must classify them, signal them correctly, and allow the caller
to react appropriately.

Error handling is an integral part of the design of the code and of its API.

Why explicit error handling?
Without a clear error handling strategy, one obtains:

• silent errors,
• undefined behaviors,
• inconsistent internal states,
• bugs that are difficult to reproduce.

Good error handling makes it possible:

• to make failures visible and understandable,
• to separate the nominal code from error handling code,
• to explicitly test invalid behaviors,
• to strengthen the contract between the caller and the function.

Two major categories of errors
The first step is to distinguish the nature of the error.

1. Programming errors (bugs)

These are situations that should never occur if the code is used correctly.
Examples:

• violation of an invariant,
• out-of-bounds index,
• unexpected null pointer,
• precondition not met.

These errors indicate a bug.
Recommended handling:

• assert,
• static_assert,
• or immediate program termination.

assert(index < data.size() && "index hors limites");

These errors are generally not recoverable.

2. Usage or environment errors

These are foreseeable situations, even if the code is correct.
Examples:

• missing file,
• malformed data,

118

• invalid user input,
• unavailable hardware resource.

These errors must be reported to the caller.
Recommended handling:

• exceptions,
• return codes,
• result types (optional, expected, Result).

Error handling strategies in C++
The choice of strategy depends:

• on the type of error,
• on the context (library, application, real-time),
• on performance and readability constraints.

1. Exceptions

Exceptions allow you to clearly separate the nominal code from the error-handling code.

float parse_float(std::string const& s)
{

return std::stof(s); // may throw an exception
}

Advantages :

• readable, straightforward code,
• automatic propagation of the error,
• well-suited for rare errors.

Disadvantages :

• potential cost (depending on context),
• less explicit flow control,
• sometimes forbidden at low-level / real-time.

To be used with discipline, and clearly documented.

2. Return codes

Historical and explicit approach.

bool read_file(std::string const& name, Data& out);

Advantages :

• simple,
• no exceptions,
• explicit control.

Disadvantages :

• easy to forget to check,
• not very expressive without an associated structure.

119

3. Result types (optional, expected, Result)

A modern and expressive approach.

std::optional<float> parse_float_safe(std::string const& s);

Or with error information :

std::expected<float, ParseError> parse_float(std::string const& s);

Advantages :

• makes the error explicit in the type,
• forces the caller to handle it,
• highly testable.

Often the best compromise for modern APIs.

Full example: Robust API with a result type

#include <fstream>
#include <optional>
#include <string>
#include <vector>

struct ReadError {
enum class Code { FileNotFound, ParseError };
Code code;
std::string message;
int line = -1;

};

template <typename T>
struct Result {

std::optional<T> value;
std::optional<ReadError> error;

static Result ok(T v) { return {std::move(v), std::nullopt}; }
static Result fail(ReadError e) { return {std::nullopt, std::move(e)}; }

};

Reading a file containing a floating point number per line :

Result<std::vector<float>> read_floats(std::string const& filename)
{

std::ifstream file(filename);
if (!file.is_open()) {

return Result<std::vector<float>>::fail(
{ReadError::Code::FileNotFound, "Unable to open the file"});

}

std::vector<float> values;
std::string line;
int line_id = 0;

while (std::getline(file, line)) {
++line_id;
try {

values.push_back(std::stof(line));
} catch (...) {

return Result<std::vector<float>>::fail(
{ReadError::Code::ParseError, "Parsing error", line_id});

}
}

return Result<std::vector<float>>::ok(std::move(values));
}

120

Test minimal :

auto r = read_floats("data.txt");
assert(r.value.has_value() || r.error.has_value());

Link to the contract and tests
• the assertions verify programming errors,
• the result types / exceptions handle recoverable errors,
• the negative tests verify that errors are properly detected,
• the contract documents what falls under one or the other.

Here is an enriched and pedagogical version of your section Best practices for API design, with concrete
“bad / good” examples for each principle, while remaining coherent with the rest of 08-methodology.md.

You can replace your current section entirely with this one.

8.9 Best practices for API design
An API (Application Programming Interface) is the communication interface between a piece of code and its
users (other functions, other modules, or other developers). It describes how to use the code, which operations are
available, which parameters are expected, and which results or errors may be produced.

In C++, an API most often corresponds to the set of declarations visible in header files (.hpp).
These files describe what the code allows you to do, without exposing how it does it.

Concretely, a C++ API is made up of: - functions and their signatures, - classes and their public methods, -
types (structures, enumerations, aliases), - constants and exposed namespaces.

The API user only needs to read the header files to understand: - how to call a function, - which parameters to
provide, - which values or errors to expect, - and which rules (preconditions) must be respected.

Source files (.cpp) contain the internal implementation and can evolve freely as long as the API, defined by the
headers, remains unchanged.
Thus, in C++, designing a good API essentially comes down to designing good header files: clear, coherent,
and hard to misuse.

Objectives of a good API
A well-designed API should be:

• clear: hard to misuse,
• predictable: consistent behaviors in similar situations,
• documented by the type: the types express constraints,
• testable: easy to use in unit tests,
• stable: changes do not break existing code unnecessarily.

Making errors explicit in the API
An API should clearly indicate how errors are signaled.

Bad example (silent error)

float normalize(vec3 const& v); // what happens if v is zero?

Here:

• the contract is implicit,
• the user can call the function without knowing that it is invalid,
• the behavior in case of an error is ambiguous.

121

Example with explicit result type

std::optional<vec3> normalize(vec3 const& v);

Usage:

auto r = normalize(v);
if (!r) {

// invalid case: v is zero
}

The error is part of the API: it cannot be accidentally ignored.

Example with explicit precondition (programming error)

vec3 normalize(vec3 const& v); // precondition: norm(v) > 0

Here:

• the caller is responsible,

• the violation is a programming error,

• it can be detected via assert.

Choose explicitly whether the error is recoverable or not.

Prefer expressive types
Types should carry meaning, not just values.

To avoid: ambiguous parameters

void load(int mode); // what does mode mean?

The API allows invalid values (mode = 42).

Prefer: strong and explicit types

enum class LoadMode { Fast, Safe };
void load(LoadMode mode);

Usage:

load(LoadMode::Fast);

Advantages:

• impossible to pass an invalid value,
• the intention is clear,
• errors are detected at compile time.

Another example: ambiguous bool vs dedicated type

void draw(bool wireframe); // what does true mean?

Better design:

122

enum class RenderMode { Solid, Wireframe };
void draw(RenderMode mode);

Limit invalid states
A good API makes invalid states impossible or difficult to represent.

Problematic example: partially valid state

struct Image {
unsigned char* data;
int width;
int height;

};

Here, nothing prevents:

• data == nullptr,
• width <= 0,
• internal inconsistencies.

Better example: invariant established by the constructor

class Image {
public:

Image(int w, int h)
: width(w), height(h), data(w*h*4)

{
assert(w > 0 && h > 0);

}

unsigned char* pixels() { return data.data(); }

private:
int width, height;
std::vector<unsigned char> data;

};

Advantages:

• the object is always valid after construction,
• invariants are centralized,
• the user cannot create an inconsistent state.

Separate interface and implementation
The API should expose what the code does, not how it does it.

Header (.hpp) : interface

// image.hpp
class Image {
public:

Image(int w, int h);
void clear();
void save(const std::string& filename) const;

};

123

Source (.cpp) : implementation

// image.cpp
#include "image.hpp"

void Image::clear()
{

// internal details invisible to the user
}

Advantages:

• freedom to change the implementation,
• faster compilation,
• more stable API.

Avoid hidden side effects
A function should not modify global states in an unexpected way.

Bad example

void render()
{

global_state.counter++; // hidden side effect
}

Better example

void render(RenderContext& ctx)
{

ctx.counter++;
}

Dependencies are explicit and testable.

Practical API design rules
• clearly document the preconditions and postconditions,

• make errors visible in the type or behavior,

• avoid ambiguous parameters (bool, undocumented int),

• prefer small, orthogonal functions,

• test the API as if we were an external user,

• consider that the API is harder to modify than the implementation.

Key idea to remember
A good API prevents errors even before the program is executed.

It guides the user toward proper usage, makes errors explicit, and facilitates testing, maintenance, and evolution
of the code.

124

	Introduction to C++
	Preface
	First C++ program
	Declaration of variables
	Formatted output and input with printf, scanf
	Contiguous-element containers, arrays
	Conditionals and loops
	Associative containers : std::map
	Variable lifetimes
	Functions
	Passing arguments: copy, reference
	Classes
	External file I/O
	Code file organization
	Compilation

	Fundamental Types, Encoding
	Integer Encoding
	Encoding of Floating-Point Numbers
	Notion of Endianness
	Summary of fundamental types
	Getting the size with sizeof
	Important notes
	Fixed-size types
	Bitwise operations
	Summary

	Pointers
	Concept of storage and memory addressing
	Address of a variable
	Passing arguments
	Case of contiguous arrays
	Contiguity in classes and structs
	Memory Organization AoS vs SoA
	Memory allocation and deallocation
	The generic pointer void*
	Dynamic Allocation

	Classes
	Introduction
	Initialization, Constructors
	Operators
	Inheritance
	Access control: const
	Keyword: static
	Access management: the static keyword in classes

	Threads and Parallelism
	Concept of a thread
	Creating a thread in C++
	Example of parallel execution
	Passing arguments to threads
	Multiple threads and real parallelism
	Shared memory
	Synchronization and critical sections
	Atomic variables

	Generic Programming, Template
	General Principle of Templates
	Compilation principles: static duck typing, instantiation, and header files
	Static metaprogramming
	Type deduction in templates
	Template specialization
	Priority between specialization and overloading
	Aliases

	Hardware view
	Transistor principle
	Basic structure of memory and arithmetic operations
	Minimal organization: storing a bit
	Cache memory concept

	Development Methodologies and Best Practices
	Code Quality: Concrete Objectives
	General Principles: KISS, DRY, YAGNI
	Invariants, assertions et contrat de fonction
	Tests and Test-Driven Development (TDD)
	Guided example: unit tests for clamp
	Test-Driven Development (TDD)
	TDD Example: Normalization of a 3D vector
	Error handling: principles and methodology
	Best practices for API design

