ECOLE
POLYTECHNIQUE

N2 IP PARIS

Programmation C++
Application a I’Informatique Graphique

[CSC-43043-EP]

2026

Damien ROHMER - damien.rohmer@polytechnique.edu

Contents

1 Introduction au C++

1.1 Préambule L e
1.2 Premier programme en CH++o e e e e
1.3 Déclaration de variables e
1.4 Affichage et lecture formatés : printf, scanf L.
1.5 Conteneurs d’éléments contigus, tableaux
1.6 Conditionnelles etboucles e
1.7 Conteneurs associatifs : std::map
1.8 Durée deviedes variables
1.9 Fonctions e
1.10 Passage d’arguments: copie, référence
LIT Classes v v vt e e e e
1.12 Ecriture/lecture de fichiers eXternes oot
1.13 Organisation des fichiersdecode
.14 Compilation e e
Types fondamentaux, encodage

2.1 Encodagedesentiers e
2.2 Encodage des nombres flottants Lo
2.3 Notion d’endianness e e e
2.4 Synthése des types fondamentaux
2.5 Obtenir lataille avec sizeof
2.6 Remarques importanteso e e e e e e
2.7 Typesatailles spécifiques
2.8 Opérationsbitabit e e e
2.9 RESUME
Pointeurs

3.1 Notion de stockage et d’adressage enmémoire
3.2 Adressed’unevariable
3.3 Passaged’argument e e e
34 Casdestableaux contigus e e e
3.5 Contiguité dans les classesetstruct
3.6 Organisation mémoire A0S VS SOA L
3.7 Allocation et désallocation mémoire
3.8 Lacopic memoire: MEmMCPY . . « . v v v v v v e e e e e e e e e e e e e e
3.9 Lepointeur @énérique Voidsk e e e e e
310 REférences e e e e e
3.11 Allocation dynamique e e
Classes

4.1 Introduction e e e e e e e e
4.2 Initialization, CONSIIUCTEULS v v o e e e e e e e e e e
43 OPrateurS o v e e e e e e e e e e e e e e e e e e
4.4 HEritage o . e e e e e
4.5 Polymorphisme e
4.6 Gestiond’acc€s: CoNSt e e e e e e e
477 Motclé: static
4.8 Gestion d’acces : le mot-clé staticdanslesclasses.o
4.9 Espaces de noms (N@MESPACE) . . . v v v i i e e e e e e e e e e e e

o N A NN

e

13
14
14
17
18
21
23
24

28
28
29
30
30
31
31
31
32
33

34
34
35
36
38
41
43
44
47
48
52
55

5 Threads et parallélisme

7

5.1 Notiondethread e
52 Créationd’unthreaden C++ e
5.3 Exemple d’exécutionparalléle
5.4 Passage d’arguments aux threads L
5.5 Threads multiples et parallélisme réel
56 Mémoire parta@ee e e e e e e
5.7 Synchronisation et sections Critiques e e e e e
5.8 Variables atomiques e e e e e e
Programmation générique, template

6.1 Principe général des templates
6.2 Principes de compilation: duck typing, instanciation et fichiers d’en-téte
6.3 Meta-programmation StatiqUe e e e e e e e e e e e
6.4 Déduction de types dans les templates
6.5 Spécialisation des templates
6.6 Priorité entre spécialisation et surcharge L L
6.7 ALIas
Vue matérielle

7.1 Principe dutransistor e e e e e e e e e
7.2 Structure de base de la mémoire et des opérations arithmétiques
7.3 Organisation minimale : stockerunbit
7.4 Notionde cache mEmOIre i e e e e e e e
Méthodologies de développement et bonnes pratiques

8.1 Qualité de code : objectifsconcrets
8.2 Principes généraux : KISS, DRY, YAGNI
8.3 Invariants, assertions et contrat de fonction
8.4 Tests et Test-Driven Development (TDD)
8.5 Exemple guidé : tests unitaires pour clampo
8.6 Test-Driven Development (TDD) e
8.7 Exemple TDD : normalisation d’'un vecteur 3D
8.8 Gestion des erreurs : principes et méthodologie L.
8.9 Bonnes pratiques pour la conceptiond’API L Lo

80
80
80
80
81
82
82
82
83

84
84
86
88
90
92
96
98

101
101
104
104
108

1 Introduction au C++

1.1 Préambule

Le langage C++, créé au début des années 1980 par le chercheur Bjarne Stroustrup chez Bell Labs, est introduit
initialement comme une extension du langage C avec lequel il est intrinséquement lié. Le langage C est un langage
dit de “bas niveau”, en étant proche du matériel (processeur, mémoire) particuliérement adapté pour coder des
applications efficaces liées au systéme d’exploitation. Le langage C++ a été introduit pour préserver les possibilités
du langage C, tout en I’étendant a des mécanismes de structuration et d’abstraction pour la description de logiciels
de grande envergure.

Le C++ se distingue des autres langages de programmation par sa capacité unique a combiner performance
bas niveau et abstraction de haut niveau. Héritier direct du C, il permet un contréle précis de la mémoire et
du matériel, indispensable dans les domaines ou ’efficacité est critique (systémes embarqués, calcul scientifique,
moteurs de jeu, etc.). Contrairement a des langages comme Python ou Java, qui reposent sur une machine virtuelle
ou un interpréteur qui ajoute une étape d’indirection lors de I’exécution, le C++ est un langage compilé qui produit
du code machine optimisé directement lu et exécuté par le processeur, garantissant ainsi une exécution trés rapide.

Une autre spécificité majeure du C++ est son support simultané de plusieurs maniéres de programmer, appelées
paradigmes de programmation :

- Procédural, hérité du C, pour une approche classique fondée sur des fonctions et des structures de contrdle.

- Orienté objet, introduit avec les classes, I’encapsulation, I’héritage et le polymorphisme, facilitant la conception
modulaire de logiciels complexes.

- Générique, grace aux templates (généricité paramétrée par type), qui permettent d’écrire du code réutilisable et
indépendant des types.

- Fonctionnel, de plus en plus présent depuis C++11 avec les lambdas (fonctions anonymes) et les algorithmes de
la bibliothéque standard.

Ce mélange de paradigmes fait aujourd’hui du C++ un langage reconnu comme extrémement flexible, capable
de s’adapter a une grande variété de contextes. Il reste incontournable pour des domaines ou la performance et la
maitrise fine de la mémoire sont essentielles, comme les moteurs de jeux, les logiciels embarqués, la simulation
numérique, le calcul haute performance ou encore la finance.

Evolutions du C++

Le langage C++ continue a intégrer des évolutions réguliéres.

* C++98 et C++03 ont normalisé le langage et ses bibliothéques de base.
o C++11, appelé “C++ moderne”, a marqué un tournant important avec, notamment, I’arrivée des boucles éten-
dues, facilitées d’initialisation des structures, le mot-clé auto (déduction de type), I’apparition des pointeurs

intelligents (ex. std::unique_ptr, std::shared_ptr) et des fonctions lambdas (fonctions anonymes).

* C++14 et C++17 ont enrichi la syntaxe et la bibliothéque standard (structured bindings, filesystem, paral-
1élisme).

o C++20 a apporté les principes de concepts (contraintes pour templates), les coroutines (fonctions dont
I’exécution peut étre suspendue et reprise) et les ranges (opérations sur séquences).

+ C++23 continue cette modernisation, en affinant les bibliothéques et en simplifiant 'usage du langage.

Pourquoi utiliser le C++ ?

Le C++ est actuellement I'un des langages indispensables lorsqu’il s’agit de concevoir des applications a fortes
contraintes de performance, de temps réel ou de calcul intensif.

Domaines d’application

+ Applications scientifiques et temps réel : simulations physiques, calculs numériques, systémes embarqués.

* Moteurs de jeux (Game Engines) : Unity, Unreal Engine, Godot, ainsi que pratiquement tous les jeux AAA
utilisent massivement le C++.

* Logiciels 2D/3D : Maya, Blender, Photoshop, Premiere Pro, Catia, SolidWorks reposent en grande partie sur
du C++.

+ Calcul paralléle et GPU : CUDA (NVIDIA) est basé sur le C++.

* Frameworks de Deep Learning et Vision : PyTorch, TensorFlow, OpenCV s’appuient sur des coeurs en
C++ pour optimiser les performances.

+ Systémes d’exploitation : Windows est écrit en grande majorité en C et C++.

* Web et services massifs : navigateurs (Chrome, Firefox) et infrastructures critiques (AWS, Facebook, etc.)
utilisent le C++ pour les parties ceeur de performance.

Points forts (+)

* Performance : compilation directe en code machine, optimisations trés fines possibles.
* Robustesse : un langage mir, utilisé et testé a trés grande échelle.

* Haut et bas niveau : rare combinaison qui permet aussi bien d’écrire du code proche du matériel que
d’utiliser des abstractions modernes de haut niveau.

 Spécificité : cette dualité n’est présente que dans C++ (et plus récemment Rust).
 Liberté de programmation : support de multiples paradigmes (procédural, objet, générique, fonctionnel).
+ Compatibilité C : possibilité de réutiliser I'immense écosystéme du langage C.

Points faibles (—)

+ Complexité : la richesse du langage et la multiplicité des paradigmes peuvent étre difficiles a maitriser.

* Gestion mémoire : la gestion mémoire manuelle est un facteur de complexité et d’erreurs de programmation
importantes.

* Chaine de compilation : la compilation est plus lourde et parfois plus lente que dans d’autres langages
modernes.

Comparaison rapide avec d’autres langages

* C++vs Java
Tous deux sont orientés objet, mais leur philosophie differe.

— C++ est compilé en code machine natif, ce qui le rend trés performant et adapté aux systémes ot chaque
cycle de calcul compte.

— Java est exécuté sur une machine virtuelle (JVM), ce qui facilite la portabilité mais ajoute une couche
d’abstraction.

— Java gére la mémoire automatiquement via un garbage collector, alors que C++ laisse au programmeur
le contréle fin de 1’allocation et de la libération.

e C++ vs Python
Python est réputé pour sa simplicité d’écriture et sa rapidité de développement, mais reste un langage inter-
prété, donc bien plus lent en exécution.

— C++ demande plus de rigueur et de syntaxe, mais permet d’atteindre des performances maximales.

— En pratique, Python est souvent utilisé pour le prototypage, le scripting et I’analyse de données, tandis
que C++ est privilégié pour les parties critiques en performance (moteurs 3D, calcul scientifique, sim-
ulations).

— Les deux langages sont parfois utilisés ensemble : Python comme couche de haut niveau, C++ pour les
modules de calcul.

* C++ vs Rust
Rust est un langage plus récent (2010), congu pour offrir la méme efficacité que le C++ mais avec une gestion
de la mémoire plus sire.

— Rust supprime toute possibilité de fuite ou d’acces illégal a la mémoire grace a son systéme d’emprunts
et de possession.

— C++ offre plus de flexibilité et dispose d’un immense écosystéme logiciel existant, mais au prix d’une
rigueur nécessaire pour éviter erreurs et failles de sécurité.

— Rust est per¢cu comme une alternative moderne et sécurisée, mais C++ reste aujourd’hui largement
dominant en industrie et dans les bibliothéques disponibles.

1.2 Premier programme en C++

On consideére le programme C++ suivant:

// bibliothéque standard pour les entrées/sorties
#include <iostream>

int main() {
// affichage 'dun message sur la ligne de commande
std::cout << "Hello, world!" << std::endl;

// fin du programme
return 0;

Explications ligne par ligne
1. #include <iostream>

* Cette directive indique au compilateur d’inclure la bibliothéque standard iostream, qui permet d’utiliser
les flux d’entrée et de sortie (std::cin, std::cout, etc.).

2. int main()

* C’est la fonction principale du programme.
* Tout programme C++ doit posséder une fonction main.
 Son exécution commence toujours ici.

* Le mot int indique que la fonction main renvoie un entier au systéme d’exploitation (0 en cas de succes,
une autre valeur en cas d’erreur).

3. std::cout << "Hello, world!" << std::endl;

* std::cout est le flux de sortie standard (en général I’écran).
* L’opérateur << permet d’envoyer des données dans le flux.
* "Hello, world!" est une chaine de caractéres.

* std::endl insere un saut de ligne et force I’affichage immédiat.

4. return 0;

* Indique que le programme s’est bien terminé.

* La valeur retournée est transmise au systéme.

€9

Rem. Chaque instruction se termine par un point virgule “;” en C++. L’indentation et les sauts de lignes sont
optionnels, ils sont utiles pour la lisibilité du programme mais ne changent pas sa structure.

Premiére compilation (sous Linux/MacOS)

Pour transformer le fichier source C++ (par exemple hello.cpp) en un exécutable, on utilise un compilateur C++.
Sous Linux ou macOS, les compilateurs les plus courants sont :

» g++ (GNU C++ Compiler, issu de GCC)
* clang++ (compilateur C++ développé dans le cadre du projet LLVM)

Supposons que le fichier s’appelle helto.cpp. Tapez en ligne de commande dans le répertoire contenant le fichier
hello.cpp

g++ hello.cpp -o hello

* g++: lance le compilateur C++.
* hello.cpp : fichier source a compiler.
* -0 hello : option qui indique le nom de I’exécutable produit (hello).

L’execution du programme se réalise avec la commande

./hello

Ce qui doit afficher le résultat suivant

Hello, world!

1.3 Déclaration de variables

En C++, une variable est une zone de mémoire qui contient une valeur et qui est identifiée par un nom.
Chaque variable a un type qui définit la nature des valeurs qu’elle peut contenir (entiers, nombres a virgule, texte,
etc.).

Exemple simple

#include <iostream>
#include <string>

int main() {

int age = 20; // entier

float taille = 1.75f; // nombre a virgule (simple précision)
double pi = 3.14159; // nombre a virgule (double précision)
std::string nom = "Alice"; // chaine de caractéres

std::cout << "Nom : << nom << std::endl;

std::cout << "Age : " << age << std::endl;

std::cout << "Taille : " << taille << " m" << std::endl;
std::cout << "Valeur de pi : " << pi << std::endl;
return 0;

Types fondamentaux

Vous utiliserez principalement deux types fondamentaux dans vos codes :

* int : nombre entier (integer). Sur nos machines, un int est encodé sur 4 octets.

int entier = 325;

« float : nombre a virgule flottante, dit a “simple précision”. Encodé sur 4 octets.

float reel = 3.2f;

Vous rencontrerez également les types suivants :

* bool : valeur booléenne (true ou false). Introduit par C++ (absent du C), il rend le code plus lisible qu’un
entier.

bool estEtudiant = true;

* double : nombre a virgule flottante a “double précision”, encodé sur 8 octets.

double pi = 3.14159;

Par défaut, un nombre décimal sans suffixe est interprété comme un double.
> Dans notre contexte, on utilisera plus souvent des float pour rester compatibles avec la carte graphique.

* char : caractére (1 octet). La correspondance entre valeurs et caractéres est donnée par la table ASCII.

char initiale = 'A";

Un char peut également étre utilisé pour manipuler directement la mémoire au niveau de ’octet.

Remarques importantes

1. Division entiére vs division flottante

Lorsqu’on divise deux entiers, le résultat est tronqué (division euclidienne) :

// vaut 2
// vaut 1 (reste de la division)

Pour obtenir un résultat décimal, il faut qu’au moins un des opérandes soit flottant :

float c = 5 / 2.0f; // 2.5
float d = 5.0f / 2; // 2.5
float e = float(5) / 2; // 2.5

2. Le mot-clé auto

Il permet au compilateur de déduire automatiquement le type :

auto a = 5; // int
auto b = 8.4f; // float
auto ¢ = 4.2; // double

[Attention] Pour des types simples, il est préférable d’indiquer explicitement le type pour plus de lisibilité.
auto est surtout utile pour des fonctions génériques ou des types complexes.

3. Variables non initialisées

En C++, les variables fondamentales ne sont pas initialisées par défaut.

int a; // contient une valeur indéfinie

[] Pour éviter les comportements indéterminés, il est conseillé d’initialiser systématiquement vos variables

int a = 0;

Déclaration sans initialisation (exemple)

int compteur; // non initialisé
compteur = 10; // affectation d'une valeur plus tard

[Attention]: une variable non initialisée contient une valeur indéfinie et ne doit pas étre utilisée avant affecta-
tion.
Variables constantes (const)

En C++, une variable peut étre déclarée constante grace au mot-clé const. Une telle variable doit étre initialisée
au moment de sa déclaration et ne peut plus étre modifiée ensuite.

const int joursParSemaine = 7;
const float pi = 3.14159f;

int main() {

std::cout << "Pi = " << pi << std::endl;
// pi = 3.14; // ERREUR : impossible de modifier une constante
return 0;

+

Intérét

* Garantit que la valeur ne sera pas modifiée accidentellement dans le code.
+ Rend le programme plus lisible et plus siir.
 Peut permettre au compilateur d’optimiser certaines expressions.

Conversion de types (cast)

En C++, il est fréquent de convertir une valeur d’un type vers un autre : on appelle cela un cast (conversion de

type).
Exemples : conversions implicites et explicites

int i

= 3;
float f =

i; // conversion implicite : int —> float
double d = 3.9;

int j = (int)d; // cast C-style : tronque la partie décimale (narrowing)
int k = static_cast<int>(d); // cast C++-style : recommandé car plus sécurisé

Bonnes pratiques :

* Préférez static_cast<T>(expr) pour les conversions entre types numériques et entre pointeurs compatibles.

* (int)d estlanotation C-style de cast ; on peut également trouver int(d) qui est la forme fonctionnelle (function-
style) de cast. Pour les types fondamentaux, les deux se comportent de fagon équivalente (tronquent la partie
décimale).

* Notez que les conversions peuvent réduire la précision ou la plage (narrowing) : double -> int tronque, un
entier non signé peut déborder (overflow).

* Il existe également reinterpret_cast<T>(expr), qui réinterpréte la représentation binaire d’un objet comme un
autre type. C’est une opération baslIniveau, potentiellement dangereuse (risques d’alignement, d’aliasing

ou comportement indéfini) ; n’utilisez[lla que pour de I’interopérabilité ou de la lecture/écriture binaire
clairement documentés.

Cette notion est utile pour contréler explicitement les conversions et éviter des comportements surprises lors
des opérations arithmétiques ou des passages d’arguments.

1.4 Affichage et lecture formatés : printf, scanf
printf et scanf (hérités du C)
En plus de std::cout et std::cin, C++ conserve les fonctions classiques du langage C :

* printf (print formatted) : pour un affichage formaté.
* scanf (scan formatted) : pour une lecture formatée.

Elles sont définies dans I’en-téte <cstdio> (ou <stdio.h> en C). Leur usage repose sur des spécificateurs de
format (d, %f, %s, etc.) qui indiquent le type de la variable.

Exemple d’affichage formaté avec printf

#include <cstdio>

int main() {
int age = 20;
float taille = 1.75f;

printf("Age : %d ans, taille : %.2f m\n", age, taille);
return 0;

Sortie :

Age : 20 ans, taille : 1.75m

* s%d : entier (int)
o 5f : flottant (float OuU double)
*+ %.2f : flottant affiché avec deux décimales

Exemple de lecture avec scanf

#include <cstdio>

int main() {

int age;

printf("Entrez votre age : ");

scanf("%d", &age); // & = adresse mémoire
printf("Vous avez %d ans.\n", age);

return 0;

Dans scanf, il est nécessaire de fournir I’adresse de la variable (ici sage), car la fonction modifie directement sa
valeur.

Principaux spécificateurs de format (printf / scanf)

Spécificateur Type attendu Exemple d’utilisation Résultat affiché
%d entier signé (int) printf("sd", 42); 42

%u entier non signé (unsigned) printf("su", 42u); 42

%f flottant (float ou double) printf("sf", 3.14); 3.140000

%.nf flottant avec n décimales printf("s.2f", 3.14159); 3.14

%e flottant en notation scientifique printf("se", 12345.0); 1.234500e+04

Spécificateur Type attendu Exemple d’utilisation Résultat affiché

%C caractere (char) printf("sc", 'A'); A

%S chaine de caractéres (charx) printf("%s", "Bonjour"); Bonjour

%X entier en hexadécimal (min.) printf("sx", 255); f

%X entier en hexadécimal (maj.) printf("sX", 255); FF

%p adresse mémoire (pointeur) printf("sp", &a); ox7ffee3c8as
%% caractere s littéral printf("s%d"); %d

1.5 Conteneurs d’éléments contigus, tableaux

En C++, la librairie standard (STL, Standard Template Library) définit plusieurs conteneurs permettant de
stocker des ensembles de valeurs.
Parmi eux, deux structures sont particuliérement importantes :

* std::array<T, N>: tableau statique de taille fixe.

— Les ¢éléments sont stockés de maniére contigu€ en mémoire.
— La taille n doit étre connue a la compilation et ne peut pas changer.

— Les données sont stockées dans la pile (stack memory) : plus efficace en vitesse d’acces, mais limitée
en taille (typiquement quelques Mo).

* std::vector<T> : tableau dynamique.

— Les ¢léments sont aussi stockés de maniére contigu€ en mémoire.
— La taille peut étre modifiée au cours de I’exécution (ajout/retrait d’¢léments).

— Les données sont stockées dans le tas (heap memory) : légérement plus colteux en allocation, mais
permet d’accéder a toute la mémoire vive (RAM).

* Tableaux C classiques (T var[N]) :

Taille fixe, connue a la compilation.

Pas de vérification de bornes.

Pas de méthodes utilitaires (size(), push_back, etc.).

Peu utilisés en C++ moderne, sauf pour interagir avec du code C ou pour des besoins trés bas-niveau.

Exemple simple avec std: :vector

#include <iostream>
#include <vector>

int main() {
// Création 'dun vecteur vide 'dentiers
std::vector<int> vec;

// Ajout 'déléments (redimensionnement automatique)
vec.push_back(5);
vec.push_back(6);
vec.push_back(2);

// Taille du vecteur
std::cout << "Le vecteur contient " << vec.size() << " éléments" << std::endl;

// Accés aux éléments par indice
std::cout << "Premier élément : " << vec[@] << std::endl;

10

// Modification ’'dun élément
vec[l] = 12;

// Parcours du vecteur avec une boucle

for (int k = 0; k < vec.size(); ++k) {
std::cout << "Elément " << k << " : " << vec[k] << std::endl;

return 0;

Sécurité d’acces

[Attention] : accéder a un ¢élément en dehors des bornes est un comportement indéfini (undefined behavior),
qui peut provoquer un crash du programme.

// Mauvais usage : peut provoquer une erreur ou un comportement imprévisible
// vec[8568] = 12;

// Accés sécurisé (vérification des bornes)
vec.at(0) = 42;

Redimensionnement

Un vecteur peut étre redimensionné dynamiquement avec la méthode .resize(N) :

vec.resize(10000);
// Les anciens éléments sont conservés
// Les nouveaux sont initialisés a @

Comparaison std: :array, std: :vector et tableaux C

#include <array>
#include <vector>
#include <iostream>

int main() {
// Tableau C classique
int tab[5] = {1, 2, 3, 4, 5};

// std::array (statique, taille fixe)
std::array<int, 5> arr = {1, 2, 3, 4, 5};

// std::vector (dynamique, taille variable)
std::vector<int> vec = {1, 2, 3};

std::cout << "Taille du tab : " << 5 << " (fixe, connue a la compilation)" << std::endl;
std::cout << "Taille du array : " << arr.size() << std::endl;
std::cout << "Taille du vector : " << vec.size() << std::endl;

vec.push_back(10); // possible
// arr.push_back(10); // impossible : taille fixe
// tab.push_back(10); // impossible : fonction inexistante

return 0;

Résumé

* Tableaux C (7 var[N]) : simples, mais limités et peu sirs.

* std::array<T, N>: tableau statique, taille fixée a la compilation, stocké sur la pile (stack memory).

11

* std::vector<T> : tableau dynamique, taille modifiable, stocké sur le tas (heap memory).
* Les trois stockent leurs éléments de manicre contigué en mémoire.

 En pratique :

— Utilisez std::array pour des petites tailles fixes connues a I’avance.
— Utilisez std: :vector pour des données dont la taille peut varier au cours du programme.

— Evitez les tableaux C sauf cas particuliers (interopérabilité avec du code C, bas niveau).

1.6 Conditionnelles et boucles

if / else

Structure générale :

if (condition) {

// instructions si la condition est vraie
} else {

// instructions si la condition est fausse

[Attention] Les accolades {} sont optionnelles si une seule instruction est présente :

if (x > 0)
std::cout << "x est positif" << std::endl;

Exemple :

int age = 20;

if (age >= 18) {

std::cout << "Vous étes majeur." << std::endl;
} else {

std::cout << "Vous étes mineur." << std::endl;

if / else if / else

Structure générale :

if (conditionl) {
// instructions
} else if (condition2) {
// instructions
} else {
// instructions par défaut

Exemple :

int note = 15;

if (note >= 16)

std::cout << "Tres bien !" << std::endl;
else if (note >= 10)

std::cout << "Suffisant." << std::endl;
else

std::cout << "Echec." << std::endl;

12

Les boucles

La boucle while

Structure générale :

while (condition) {
// instructions répétées tant que la condition est vraie

Exemple :

int i = 0;

while (i < 5) {
stdi:icout << "i = " << i << std::endl;
i++;

La boucle do ... while

Structure générale :

do {
// instructions exécutées au moins une fois
} while (condition);

Exemple :

int i = 0;

do {
std::cout << "i = " << i << std::endl;
i++;

} while (i < 5);

La boucle for

Structure générale :

for (initialisation; condition-continuation; incrément) {
// instructions répétées

Exemple :

for (int i = 0; i < 5; i++) {
std::cout << "i = " << i << std::endl;

La boucle for étendue (C++11)

Structure générale :

for (type variable : conteneur) {
// instructions utilisant la variable

¥

Exemple :

#include <vector>

int main() {
std::vector<int> valeurs = {1, 2, 3, 4, 5};

13

for (int v : valeurs)
std::cout << v << std::endl;

Extension : switch / case

Le switch permet de tester plusieurs valeurs d’'une méme variable entiére ou caractere.
Structure générale :

switch (variable) {

case valeurl:
// instructions
break;

case valeur2:
// instructions
break;

default:
// instructions par défaut

[Attention] Ne fonctionne qu’avec des types entiers ou caractéres.
Le mot-clé break évite d’exécuter les blocs suivants.

1.7 Conteneurs associatifs : std: :map

Un std::map est un conteneur associatif de la bibliothéque standard qui stocke des paires clé/valeur triées par clé.
Chaque clé est unique et permet d’accéder efficacement a la valeur correspondante (recherche en O(log n)).

¢ Inclus : #include <map>

* Ordre : les ¢léments sont triés par leur clé (utilise operator< par défaut).

* Acceés : operator[] crée une valeur par défaut si la clé n’existe pas ; find permet de tester I’existence sans
créer.

Exemple simple : compter la fréquence de mots

#include <iostream>
#include <map>
#include <string>

int main() {
std::map<std::string, int> counts;

// Insertion / incrémentation
counts ["pomme"] = 5;
counts["banane"] = 4;
counts["avocat"] = 8;

counts ["pomme"]++;

// Parcours et affichage
for (auto pair : counts) {
std::cout << pair.first << " : " << pair.second << std::endl;
}
// Affiche:
// avocat : 8
// banane : 4
// pomme : 6

// Recherche sans création
auto it = counts.find("orange");
if (it == counts.end())
std::cout << "orange non trouvé" << std::endl;

// Suppression
counts.erase('banane");

return 0;

14

Remarques :

« Utilisez operator[] pour insérer/accéder rapidement. Une entrée est automatiquement créé si la clé est absente.
* Pour tester 1’existence sans créer, utilisez find.

1.8 Durée de vie des variables

En C++, la durée de vie (ou scope) d’une variable est déterminée par le bloc d’instructions dans lequel elle est
déclarée.

Un bloc est défini par des accolades { ... }.

La variable existe depuis sa déclaration jusqu’a I’accolade fermante } du bloc.

Exemple 1 : variable locale a un bloc

int main()
{
if (true) {
int x = 5; // x est défini dans le bloc "if"
std::cout << x << std::endl;
}

// Ici, x 'nexiste plus : il est détruit a la fin du bloc

Exemple 2 : variable définie dans un bloc englobant

int main()
{
int x = 5; // x est défini dans le bloc de la fonction main()
if (true) {
std::icout << x << std::endl; // x peut étre utilisé dans ce sous-bloc
}

// x existe toujours 'jusqua la fin de main()

Remarques importantes

* Ce comportement est différent de Python, ot une variable définie dans un if ou une boucle reste accessible
jusqu’a la fin de la fonction.

* Il est interdit de définir plusieurs variables ayant le méme nom dans un méme bloc.

— Cela est possible dans des sous-blocs :

int x = 5;

{
int x = 10; // autorisé mais a éviter, car peu lisible
std::cout << x << std::endl; // affiche 10

Iy

std::cout << x << std::endl; // affiche 5

* Bonne pratique : déclarez vos variables dans le bloc de plus courte durée de vie possible.
Cela améliore la lisibilité du code et réduit les risques d’erreurs.

1.9 Fonctions

En C++, une fonction est un bloc de code réutilisable qui effectue une tache particuliére.
La syntaxe générale est la suivante :

15

typeRetour nomFonction(type nomArgumentl, type nomArgument2, ...)
{

// corps de la fonction

return valeur;

Exemple simple

int addition(int a, int b)
{
return a + b;

}

» Une fonction qui ne renvoie pas de valeur aura pour type void.

» Une fonction qui ne prend pas d’argument aura simplement des parenthéses vides.

+ Lapremicre ligne décrivant le nom et les types de la fonction est appelée signature ou en-téte de la fonction.
*+ Le reste est appelé le corps ou implémentation de la fonction.

Déclaration et définition

En C++, il est nécessaire que la signature d’une fonction soit déclarée avant son utilisation. Sinon, il y aura une
erreur de compilation.

Exemple correct (définition avant utilisation)

int addition(int a, int b)

{
return a + b;
Iy
int main()
{
int ¢ = addition(5, 3); // 0K
+

Exemple correct (déclaration puis définition)

int addition(int a, int b); // Déclaration

int main()
{
int ¢ = addition(5, 3); // 0K
+
int addition(int a, int b) // Définition
{
return a + b;
+

Exemple incorrect

int main()
{
int ¢ = addition(5, 3); // ERREUR : addition 'nest pas encore déclarée

}

int addition(int a, int b)

{

16

return a + b;

Exemple : fonction norm

Ecrivons une fonction qui calcule la norme euclidienne d’un vecteur 3D de coordonnées (x, y, z) :

#include <iostream>
#include <cmath> // pour std::sqrt

float norm(float x, float y, float z)

{
return std::sqrt(xkx + yxy + zxz);
+
int main()
{
std::cout << "Norme de (1,0,0) : " << norm(1.0f, 0.0f, 0.0f) << std::endl;
std::cout << "Norme de (0,3,4) : " << norm(0.0f, 3.0f, 4.0f) << std::endl;
std::cout << "Norme de (1,2,2) : " << norm(1.0f, 2.0f, 2.0f) << std::endl;
+

Sortie attendue :

Norme de (1,0,0) : 1
Norme de (0,3,4) : 5
Norme de (1,2,2) : 3

Fonctions mathématiques utiles

e Carré: float x2 = x % X3
e Racine carrée : float y = std::sqrt(x);
» Puissance : float y = std::pow(x, p)

[Attention] Ne pas utiliser ~ ni +x en C++ : ce ne sont pas des opérateurs de puissance.

Surcharge de fonctions (Function Overloading)

En C++, plusieurs fonctions peuvent partager le méme nom tant que leurs parameétres difféerent. C’est ce qu’on
appelle la surcharge (overloading).

Exemple

#include <iostream>
#include <cmath>

// Résout ax + b =0
float solve(float a, float b) {
return -b / a;

}

// Résout ax"2 + bx + ¢ = @ (une racine)
float solve(float a, float b, float c) {
float delta = bxb - 4xaxc;
return (-b + std::sqrt(delta)) / (2xa);

int main() {
float x = solve(1.0f, 2.0f); // Appelle la lére version
float y = solve(l.0f, 2.0f, 1.0f); // Appelle la 2éme version

std::cout << "Solution linéaire : " << x << std::endl;
std::cout << "Solution quadratique : " << y << std::endl;

17

Résumé

» Une fonction a une signature (en-téte) et un corps (implémentation).

+ Elle doit étre déclarée avant utilisation.

* Les fonctions peuvent renvoyer une valeur (return) ou étre void.

* Les fonctions surchargées permettent d’utiliser un méme nom avec des parameétres différents.

1.10 Passage d’arguments: copie, référence

En C++, les arguments des fonctions sont passés par copie par défaut :
- Les modifications faites dans la fonction restent locales.
- Pour de gros objets (vecteurs, tableaux, structures), la copie peut étre coiiteuse en performance.

Exemple avec passage par copie

#include <iostream>

void increment(int a) {
a=a+1;

}

int main() {
int x = 3;
increment(x);
std::cout << x << std::endl; // affiche 3 (x n'est pas modifié)

Ici, la variable x n’est pas modifiée dans main car increment travaille sur une copie.

Passage par référence

On peut utiliser le symbole & dans la signature pour passer un argument par référence.
Cela permet de modifier directement la variable originale :

#include <iostream>

void increment(int& a) {
a=a+1;

}

int main() {
int x = 3;
increment(x);
std::cout << x << std::endl; // affiche 4 (x est modifié)

Une référence est un alias : la fonction accéde a la variable originale et non a une copie.

Exemple avec std: :vector

Considérons une fonction qui multiplie les valeurs d’un vecteur :

#include <iostream>
#include <vector>

std::vector<float> generate_vector(int N)

{
std::vector<float> values(N);
for (int k = 0; k < N; ++k)
values[k] = k / (N - 1.0f)
return values;
}

void multiply_values(std::vector<float> vec, float s)

{

18

for (int k = 0; k < vec.size(); ++k) {

veclk] = s x vecl[k]

}

std::cout << "Last value in the function: " << vec.back() << std::endl;
+
int main()
{

int N = 101;

std::vector<float> vec = generate_vector(N);

multiply_values(vec, 2.0f);

std::cout << "Last value in main: " << vec.back() << std::endl;
+

Sortie attendue :

Last value in the function: 2
Last value in the main: 1

Ici, vec est passé par copie a multiply_values.
La modification est faite sur une copie locale, donc vec dans main reste inchangé.

Passage par référence (correction)

Modifions la signature pour passer le vecteur par référence :

void multiply_values(std::vector<float>& vec, float s)

{
for (int k = 0; k < vec.size(); ++k) {
veclk] = s x veclkl];
}
std::cout << "Last value in the function: " << vec.back() << std::endl;
I

Résultat attendu :

Last value in the function: 2
Last value in the main: 2

Références constantes

Si I’on souhaite éviter la copie sans modifier le vecteur, on peut utiliser une référence constante :

float sum(std::vector<float> const& T) {
float value = 0.0f;
for (int k = 0; k < T.size(); k++)
value += TI[k];
return value;

Ce type de passage permet :
1. D’éviter la copie des données.
2. D’assurer que les valeurs ne seront pas modifiées dans la fonction.
Bonne pratique : utiliser des références constantes pour les gros objets qui ne doivent pas étre modifiés.

1.11 Classes

En C++, une classe (ou une struct) est un moyen de regrouper dans une méme entité :

* des attributs (données membres),
* et des méthodes (fonctions membres) qui opérent sur ces données.

On parle alors d’objet pour désigner une instance de la classe.

19

Déclaration et utilisation d’un objet simple

#include <iostream>
#include <cmath>

// Déclaration 'dune structure
struct vec3 {
float x, y, z;

18

int main()

{
// Création 'dun vec3 non initialisé
vec3 pl;
// Création et initialisation 'dun vec3
vec3 p2 = {1.0f, 2.0f, 5.0f};
// Accés et modification des attributs
p2.y = -4.0f;
stdi:cout << p2.x << "," << p2.y << "," << p2.z << std::endl;
return 0;

}

Struct vs Class

En C++, les objets peuvent étre définis avec le mot-clé struct ou class :

struct vec3 {
float x, y, z; // Par défaut : public
i

class vec3 {
public:
float x, y, z; // Doit étre indiqué explicitement

18

Différence principale :

 Dans une struct, les membres sont publics par défaut.
 Dans une class, les membres sont privés par défaut.

En pratique :

* On utilise souvent struct pour des objets simples qui agrégent des données publiques.
* On préfeére class lorsque I’on souhaite encapsuler des données privées avec des méthodes d’acces.

Méthodes (fonctions membres)

Une classe peut définir des méthodes, ¢’est-a-dire des fonctions qui manipulent directement ses attributs.

#include <iostream>
#include <cmath>

struct vec3 {
float x, y, z;

float norm() const; // méthode qui ne modifie pas 'lobjet
void display() const; // idem
void normalize(); // méthode qui modifie (x,y,z)

+
// Implémentation des méthodes

float vec3::norm() const {
return std::sqrt(x *x x +y xy + z % z);

20

void vec3::normalize() {
float n = norm();
X /= n;
y /=n;
z /=n;

}

void vec3::display() const {
stdiicout << "(" << x << "," <<y << "," <<z << ")" << std::endl;

+

int main()

{
vec3 p2 = {1.0f, 2.0f, 5.0f};
// Norme
std::cout << p2.norm() << std::endl;
// Normalisation
p2.normalize();
// Affichage
p2.display();
return 0;

+

Remarques

* Les méthodes peuvent accéder directement aux attributs de 1’objet sans utiliser this->, bien que ce soit pos-
sible.

* On sépare généralement la déclaration (dans la struct/class) et I’'implémentation (avec NomClasse: :NomMethode).

* Le mot-clé const placé aprés une méthode indique qu’elle ne modifie pas ’objet. Cela améliore la robustesse
et la lisibilité.

Constructeurs et destructeur

Une classe peut définir des constructeurs pour initialiser ses objets et un destructeur pour exécuter du code lors
de leur destruction.

#include <iostream>
#include <cmath>

struct vec3 {
float x, y, z;

// Constructeur vide
vec3();

// Constructeur personnalisé
vec3(float v);

// Destructeur
~vec3();

18

// Initialisation a @
vec3::vec3() : x(@0.0f), y(o.0f), z(0.0f) { }

// Initialisation avec une valeur commune
vec3::vec3(float v) : x(v), y(v), z(v) {}

// Destructeur
vec3::~vec3() {
std::cout << "Goodbye vec3" << std::endl;

}

int main() {

21

vec3 a; // appelle vec3()
vec3 b(1.0f); // appelle vec3(float)

return 0; // appelle ~vec3()

Constructeur ou destructeur par défaut (= default)

Dans certains de cas, on ne souhaite pas redéfinir un constructeur ou un destructeur, mais simplement deman-
der explicitement au compilateur de générer automatiquement I’implémentation par défaut. On utilise alors la
syntaxe = default.

struct vec3 {
float x, y, z;

// Génére automatiquement un constructeur par défaut
vec3() = default;

// Génére automatiquement un destructeur par défaut
~vec3() = default;

Ceci est équivalent & ne rien écrire, mais a deux avantages :

« Lisibilité : cela rend explicite qu’un constructeur ou un destructeur existe et doit étre celui fourni par le
compilateur.

* Robustesse : permet d’éviter certaines suppressions implicites de constructeur/destructeur si d’autres sont
définis dans la classe.

Fonctions membres vs fonctions non membres

En C++, le choix entre une méthode (fonction membre) et une fonction externe est laissé au développeur. Par
exemple, la norme peut aussi étre définie comme une fonction indépendante :

#include <cmath>

struct vec3 {
float x, y, z;
18

// Norme comme fonction non-membre
float norm(const vec3& p) {

return std::sqrt(p.xxp.x + p.y*xp.y + p.z*p.z);
+

int main() {
vec3 p = {1.0f, 2.0f, 3.0f};
float n = norm(p); // appel en tant que fonction

Lutilisation de const& évite de copier inutilement 1’objet.

1.12 EKcriture/lecture de fichiers externes

En C++, la bibliothéque <fstream> permet d’écrire et de lire des données dans des fichiers. Celle-ci fournit trois
classes principales :

* std::ifstream (input file stream) : pour lire un fichier (entrée).
* std::ofstream (output file stream) : pour écrire dans un fichier (sortie).
* std::fstream : pour combiner lecture et écriture.

22

Exemple : écriture d’un vecteur dans un fichier

On souhaite sauvegarder les coordonnées d’un vec3 dans un fichier texte.

#include <iostream>
#include <fstream>
#include <cmath>

struct vec3 {
float x, y, z;
18

int main() {
vec3 p = {1.0f, 2.0f, 3.5f};

std::ofstream file("vec3.txt"); // ouverture en écriture
if (!file.is_open()) {

std::cerr << "Erreur : impossible ’douvrir le fichier !" << std::endl;
return 1;

}

file << "Bonjour C++ !" << std::endl;

file << p.x << << p.z << std::endl;
file.close(); // fermeture du fichier

<< p.y <<

return 0;

Aprés exécution, le fichier vec3.txt contient :

Bonjour C++ !
123.5

Exemple : lecture d’un vecteur depuis un fichier

On peut ensuite relire ce vec3 depuis le fichier :

#include <iostream>
#include <fstream>
#include <cmath>

struct vec3 {
float x, y, z;
18

int main() {
vec3 p;

std::ifstream file("vec3.txt"); // ouverture en lecture

if (!file) {
std::cerr << "Erreur : fichier introuvable !" << std::endl;
return 1;

}

std::string line;

std::getline(file, line);

file >> p.x >> p.y >> p.z; // lecture des trois valeurs
file.close();

std::cout << "vec3 relu : (" << p.x << ", " << p.y << ", " << p.z << ")" << std
return 0;

iiendl;

Affichage attendu :

vec3 relu : (1, 2, 3.5)

23

Modes d’ouverture

Lors de I’ouverture d’un fichier, on peut préciser des modes :

* std::ios::in: lecture (par défaut pour ifstream).

* std::ios::out : écriture (par défaut pour ofstream).

* std::ios::app : ajout a la fin du fichier sans I’effacer.

* std::ios::binary : lecture/écriture en mode binaire (ex. images).

Exemple :

std::ofstream file("log.txt", std::ios::app); // ouverture en ajout
file << "Nouvelle entrée" << std::endl;

1.13 Organisation des fichiers de code

Lorsqu’un programme devient volumineux, il est nécessaire de séparer le code en plusieurs fichiers afin de
préserver la lisibilité, la modularité et de faciliter la maintenance.
Une organisation typique avec des classes en C++ repose sur trois types de fichiers :

1. Fichier d’en-téte (.hpp ou .h)

¢ Contient les déclarations des classes, des structures et des fonctions.
« Sert d’interface publique : ce que les autres fichiers doivent connaitre pour utiliser la classe.

2. Fichier d’implémentation (.cpp)

« Contient le code des méthodes et des fonctions déclarées dans le . hpp.
+ Réalise I’implémentation détaillée des comportements.

3. Fichier principal ou d’utilisation (main.cpp, etc.)

« Contient la fonction main() et utilise les classes/fonctions en incluant le fichier d’en-téte.

Exemple : organisation avec une classe vec3

Fichier d’en-téte — vec3.hpp

#pragma once
#include <cmath>

// Déclaration de la classe
struct vec3 {
float x, y, z;

float norm() const;
void normalize();

18

// Fonction non-membre
float dot(vec3 const& a, vec3 const& b);

Fichier d’implémentation — vec3. cpp

#include "vec3.hpp"

// Méthodes de vec3
float vec3::norm() const {
return std::sqrt(xkx + yxy + zxz);

}

24

void vec3::normalize() {
float n = norm();
X /=n;y/=n; z/=n;

// Fonction non-membre
float dot(vec3 const& a, vec3 const& b) {
return a.xxb.x + a.yxb.y + a.z*b.z;

}

Fichier d’utilisation — main. cpp

#include "vec3.hpp"
#include <iostream>

int main() {
vec3 v = {1.0f, 2.0f, 3.0f};

std::cout << "Norme : " << v.norm() << std::endl;

v.normalize();
std::cout << "Norme aprés normalisation : " << v.norm() << std::endl;

vec3 w = {2.0f, -1.0f, 0.0f};
std::cout << "Produit scalaire v.w = " << dot(v, w) << std::endl;

return 0;

Remarques importantes

+ La directive #include "vec3.hpp" copie-colle le contenu du fichier .hpp au moment de la compilation.

* Tous les fichiers qui utilisent vec3 doivent inclure son fichier d’en-téte (vec3.hpp).

* Ne jamais inclure directement un fichier . cpp dans un autre fichier.

* Les déclarations partagées doivent toujours étre dans un fichier d’en-téte unique, inclus par tous les fichiers
concernés.

A propos de #pragma once

Ladirective #pragma once est utilisée en en-téte pour éviter les inclusions multiples d’un méme fichier. Lorsqu’un
fichier . hpp est inclus plusieurs fois (directement ou indirectement), cela peut provoquer des erreurs de compilation
liées a des redéfinitions de classes ou de fonctions.

Avec #pragma once, le compilateur garantit que le contenu du fichier ne sera inclus qu’une seule fois, méme si
plusieurs fichiers tentent de I’inclure.

C’est une alternative plus concise et lisible que les gardes d’inclusion classiques utilisant #ifndef, #define et #endif.

En pratique, il est recommandé d’ajouter systématiquement #pragma once en téte de vos fichiers d’en-téte.

1.14 Compilation

En C++, la compilation est le processus qui transforme le code source lisible par un humain (fichiers .cpp et .hpp)
en un programme exécutable compréhensible par 1’ordinateur. Cette transformation s’effectue en plusieurs étapes.
Le compilateur commence par analyser le code et le traduit en code assembleur.

Le code assembleur est un langage de bas niveau qui correspond directement aux instructions compréhensibles
par le processeur. Contrairement au C++ qui est portable entre systémes et processeurs, I’assembleur est dépendant
de I’architecture matérielle (Intel x86, ARM, etc.). Chaque ligne de C++ peut ainsi donner lieu a une ou plusieurs
instructions assembleur, telles que des opérations de calcul, de copie mémoire ou de saut conditionnel.

Ensuite, ce code assembleur est converti en code machine binaire qui constitue le langage natif du processeur.
Ce code est stocké dans un fichier objet binaire. Finalement, un éditeur de liens (/inker) assemble les différents
fichiers objets et les bibliothéques utilisées pour produire 1’exécutable final.

25

Ainsi, le role de la compilation est de traduire un langage de haut niveau (C++) en instructions de bas niveau
(assembleur, puis machine) que le processeur peut exécuter directement, tout en optimisant les performances.

Schéma simple du pipeline de compilation

Fichier source (.cpp)
1 (compilateur)
Fichier objet (.o0)
v (linker / éditeur de liens)
Exécutable (programme binaire)

Schéma avec plusieurs fichiers sources

main.cpp vec3.cpp utils.cpp

13 13 i
(compilateur) (compilateur) (compilateur)
13 13 i
main.o vec3.o utils.o
1 13 i

[linker / éditeur de liens]
v
programme exécutable

Exemple de code assembleur

Exemple C++

int add(int a, int b) {
return a + b;

}

int main() {
int x = add(2, 3);
return x;

Exemple d’assembleur généré (x86-64, simplifié)

add(int, int): # Début de la fonction add
mov eax, edi # Copier le ler argument (a) dans eax
add eax, esi # Ajouter le 2eme argument (b)
ret # Retourner eax (résultat)
main: # Début de la fonction main
push rbp # Sauvegarde du pointeur de base
mov edi, 2 # Charger 2 dans le registre edi (ler argument)
mov esi, 3 # Charger 3 dans le registre esi (2e argument)
call add(int, int) # Appeler la fonction add
pop rbp # Restaurer le pointeur de base
ret # Retourner le résultat dans eax
Explications

* edi et esi : registres utilisés pour passer les ler et 2e arguments aux fonctions (convention d’appel x86-64
System V).

* eax : registre ou le résultat est stocké et retourné par la fonction.

* mov : copie une valeur dans un registre.

* add : effectue une addition entre deux registres.

26

* ret : retourne de la fonction, en utilisant la valeur présente dans eax comme résultat.

Sous Linux/MacOS

Sur Linux et MacOS, les compilateurs les plus utilisés sont g++ (GNU) et clang++ (LLVM).
Pour compiler un programme simple (un seul fichier) :

g++ main.cpp -o programme

ou

clang++ main.cpp -o programme

* main.cpp : fichier source C++ a compiler.
* —o programme : nom de 1’exécutable produit.

Si le projet contient plusieurs fichiers, il devient fastidieux de tout compiler a la main. On utilise alors un
Makefile avec I’outil make, qui décrit les dépendances et les régles de compilation.

Exemple minimal de Makefile :

Voici ton Makefile annoté avec la syntaxe générale en commentaire :

Cible par défaut (ici : "main")
all: main

Syntaxe générale :

cible: dépendances

commande(s) a exécuter

Construction de l'exécutable "main"
main: main.o vec3.o
g++ main.o vec3.0 -o main
Syntaxe générale :
executable: fichiers_objets
compilateur fichiers_objets —o executable

Régle pour générer l'objet main.o
main.o: main.cpp vec3.hpp
g++ —-c main.cpp
Syntaxe générale :
fichier.o: fichier.cpp fichiers_inclus.hpp
compilateur —c fichier.cpp

Régle pour générer l'objet vec3.o
vec3.0: vec3.cpp vec3.hpp
g++ —C vec3.cpp
Syntaxe générale :
fichier.o: fichier.cpp fichiers_inclus.hpp
compilateur —c fichier.cpp

Nettoyage des fichiers intermédiaires
clean:
rm —f *.0 main
Syntaxe générale :
clean:
commande pour supprimer les fichiers générés

Windows

Sur Windows, le compilateur est fourni directement par Microsoft Visual Studio (MSVC). Il ne repose pas sur
make ni sur des Makefiles. Au lieu de cela, le code est organisé dans un projet Visual Studio (.s1n) qui décrit les
fichiers, dépendances et options de compilation.

L’IDE Visual Studio se charge de lancer automatiquement le compilateur MSVC lorsque vous appuyez sur
“Build” ou “Run”. Ainsi, il n’est pas nécessaire (et pas pratique) d’appeler manuellement c1.exe en ligne de com-
mande.

27

Meta-configuration via CMake

Pour éviter d’écrire un Makefile spécifique & Linux et un projet Visual Studio spécifique a Windows, on utilise
CMake.

* CMake est un outil de génération de projet.

+ Il lit un fichier de configuration (cMakeLists.txt) et géneére automatiquement les fichiers adaptés a votre sys-
téme :

— Linux/MacOS — un Makefile utilisable avec make.
— Windows — un projet Visual Studio (.sn).

Exemple d’utilisation sous Linux/MacOS:

Depuis le répertoire du projet
mkdir build

cd build

cmake ..

make # sous Linux/Mac0S

En résumé
* Linux/MacOS : compilation via g++ ou clang++, automatisation via Makefile.

* Windows : compilation via MSVC a travers un projet Visual Studio.
* CMake : outil multi-plateforme qui génére automatiquement le bon type de projet (Makefile ou .stn).

28

2 Types fondamentaux, encodage

En C++, les variables sont typées : chaque variable correspond a un espace mémoire (une ou plusieurs cases)
interprété selon un type. Exemples de types fondamentaux :

int a = 5; // entier signé (typiquement 4 octets)

float b = 5.0f; // flottant simple précision (4 octets)

double ¢ = 5.0; // flottant double précision (8 octets)

char d = 'k'; // caractére (1 octet = 8 bits), équivaut a 107 en ASCII

size_t e = 100; // entier non signé permettant d'encoder une position en mémoire (8 octets sur machines 64
bits), il est utilisé pour indiquer les tailles de tableaux ex. size() d'un std::vector.

Remarques importantes :

* La taille des types dépend de I’architecture et du compilateur (sauf char garanti sur 1 octet).
* Aucun type n’occupe moins d’un octet (8 bits).

* Pour des raisons d’efficacité, la mémoire est souvent alignée : certaines structures ajoutent du padding
(octets vides) pour s’aligner sur 4 ou 8 octets.

2.1 Encodage des entiers
Représentation binaire
Un entier est représenté en binaire :

+ Chaque bit vaut ¢ ou 1.
» Un ensemble de bits est regroupé en octets (8 bits).
* Les valeurs sont interprétées en base 2.

Exemple :

Décimal Binaire (8 bits)

0 00000000
1 00000001
2 00000010
3 00000011
4 00000100
156 10011100

Un entier peut étre représenté sur plusieurs octets :

* 4 octets (int classique) = 32 bits — jusqu’a 2~32 valeurs possibles.
+ 8 octets (long long) = 64 bits — jusqu’a 2~64 valeurs possibles.

Entiers non signés

Un unsigned int sur 4 octets (32 bits) code des valeurs de @ @ 2732 - 1 = 4 294 967 295.
Exemple en hexadécimal (représentation pratique des octets) :

* 00000000 — 0
* FFFFFFFF — 4294967295

Rappel :

* 1 octet (8 bits) = 2 caractéres hexadécimaux
* Ex. : 10011100 = 9 en hexadécimal = 156 en décimal

29

Entiers signés et complément a deux
Les entiers signés utilisent le bit le plus a gauche (MSB) pour coder le signe :

* 9 — positif
* 1 — négatif

Meéthode d’encodage : complément a deux.

* Pour obtenir la valeur négative d’un entier :

1. On inverse tous les bits.
2. On ajoute 1.

Exemple sur 8 bits :

00000101 = +5
Inverse - 11111010
Ajout +1 - 11111011 = -5

Conséquence :

+ Sur 8 bits, plage de valeurs : de -128 a +127.
» Sur 32 bits (int) : de -2 147 483 648 & +2 147 483 647.

Exemple pratique

Prenons I’entier signé encodé sur 2 octets :

C4 8D (hexadécimal)
= 11000100 10001101 (binaire)

* Interprété comme non signé : 50317.
* Interprété en signé complément a deux :

— Inversion des bits — 00111011 01110010
— Ajout 1 — 00111011 01110011 = 15219
— Donc la valeur = -152109.

2.2 Encodage des nombres flottants
Les flottants (float, double) suivent la norme IEEE 754.
Un nombre flottant est représenté par trois parties :

1. Signe (1 bit)
2. Exposant (8 bits pour float, 11 bits pour double)
3. Mantisse (23 bits pour float, 52 bits pour double)

Formule :

x = (—1)° x (1 4+ mantisse) x gewposant—biais
* float (32 bits) — biais = 127
* double (64 bits) — biais = 1023

Exemple : 46 3F cc 30 (float en hexadécimal) = 12275.046875 en décimal.
[Attention] Propriétés importantes :

 La précision dépend de la valeur : plus grande autour de 0, plus faible pour de trés grands nombres.
« Certains nombres ne sont pas représentables exactement (ex. 0.1, 0.4).
+ Toujours comparer deux flottants avec une tolérance ¢ :

if (std::abs(a - b) < 1e-6) { ... }

30

2.3 Notion d’endianness

Quand un entier occupe plusieurs octets (par exemple un int de 4 octets), I’ordinateur doit décider dans quel ordre
les octets sont stockés en mémoire. C’est ce qu’on appelle ’endianness (ou ordre des octets).

Deux conventions principales
1. Little Endian (Intel x86, ARM en mode par défaut)

» L’octet de poids faible (least significant byte) est stocké en premier (a ’adresse la plus petite).

» Exemple :

int a = 0x12345678;

Représentation mémoire (adresses croissantes) :

Adresse : 1000 1001 1002 1003
Contenu : 78 56 34 12

2. Big Endian (certaines architectures réseau, PowerPC, anciens processeurs)

* L’octet de poids fort (most significant byte) est stocké en premier.

¢ Pour la méme valeur 0x12345678 :

Adresse : 1000 1001 1002 1003
Contenu : 12 34 56 78

Pourquoi est-ce important ?

+ Compatibilité réseau Les protocoles (TCP/IP, etc.) imposent le Big Endian (network byte order). Les PC
classiques (Intel) utilisent le Little Endian : il faut donc convertir avant d’envoyer ou aprés réception.

* Fichiers binaires Si un programme écrit un fichier binaire en Little Endian, il doit préciser cet ordre. Sinon,
sur une machine Big Endian, les valeurs lues seront fausses.

+ Interopérabilité Toute communication entre machines hétérogénes doit expliciter 1’ordre des octets.

2.4 Synthése des types fondamentaux

Taille typique (x86/64

Type Description bits) Exemple de déclaration

char caractére ASCII (ou petit entier signé) 1 octet char ¢ = 'A';

bool valeur booléenne (true ou false) 1 octet (optimisé en bool b = true;
vector)

short entier court signé 2 octets short s = 123;

int entier signé standard 4 octets int a = 42;

long entier signé (taille variable selon archi) 4 octets (Windows), 8 long 1 = 100000;
(Linux)

long long entier long signé (garanti >= 64 bits) 8 octets long long x = 1el2;

unsigned entier non signé (>0 uniquement) méme taille que signé unsigned u = 42;

float nombre flottant simple précision 4 octets float f = 3.14f;

(IEEE754)
double nombre flottant double précision 8 octets double d = 2.718;

long double

size_t

flottant précision étendue (dépend archi)
entier non signé pour I’adressage
mémoire

8, 12 ou 16 octets
8 octets (64 bits)

31

long double pi = 3.14159;

size_t n = vec.size();

Taille typique (x86/64

Type Description bits) Exemple de déclaration
wchar_t caractere large (Unicode, dépend 2 octets (Windows), 4 wchar_t wc = 'é';
plateforme) (Linux)

Attention: La taille peut varier selon le compilateur et 1’architecture, sauf char qui fait toujours 1 octet.

2.5 Obtenir la taille avec sizeof

En C et C++, "opérateur sizeof retourne la taille en octets d’un type ou d’une variable.
Exemples :

#include <stdio.h>

int main() {
printf(“sizeof(char)
printf("sizeof(int)
printf("sizeof(float)
printf("sizeof(double)

%zu\n", sizeof(char));
%zu\n", sizeof(int));
%zu\n", sizeof(float));
%zu\n", sizeof(double));

int a;

double b;
printf("sizeof(a)
printf("sizeof(b)
return 0;

%zu\n", sizeof(a));
%zu\n", sizeof(b));

Sortie typique sur une machine 64 bits :

sizeof(char)
sizeof(int)
sizeof(float)
sizeof(double)
sizeof(a)
sizeof(b)

LI | | I | A | B [
(e o R N N

Rem. : le spécificateur %zu est celui prévu par la norme pour afficher une valeur de type size_t (par ex. le
résultat de sizeof). Il est également possible de convertir vers unsigned long et utiliser stu.

2.6 Remarques importantes

* sizeof(type) est évalué a la compilation, sans exécuter le programme.

+ La taille d’un type peut changer selon 1’architecture (32 bits vs 64 bits).

+ L’alignement mémoire peut introduire du padding dans les struct.

+ Pour connaitre les tailles avec certitude sur ta machine, il est conseillé d’écrire un petit programme avec

sizeof.

2.7 Types a tailles spécifiques

Pour obtenir des tailles déterministes (indépendantes de 1’architecture), le standard C/C++ définit les types dans
I’en-téte <cstdint> (C++11 / C99). Ces types garantissent un nombre de bits précis, ce qui est essentiel pour la
sérialisation, les formats binaires et les protocoles réseau.

Principaux types fixes :

* uint8_t / ints_t : entier non signé / signé sur 8 bits

* uintl6_t / int16_t : entier non signé / signé sur 16 bits
* uint32_t / int32_t : entier non signé / signé sur 32 bits
* uint64_t / int64_t : entier non signé / signé sur 64 bits

Exemples utiles complémentaires :

32

* int_fast32_t, uint_fast32_t : types entiers au moins de 32 bits mais choisis pour de meilleures performances
sur la plateforme

* int_least16_t, uint_least16_t : types entiers d’au moins 16 bits (garantie minimale)

* intptr_t, uintptr_t : entiers signés/non signés capables de contenir une valeur de pointeur

Exemple d’utilisation :

#include <cstdint>
#include <cinttypes> // pour les macros PRIu32, PRId64,
#include <cstdio>

int main() {
uint8_t a = 255;
intl6_t b = -12345;
uint32_t c = OxDEADBEEF;

std::printf("sizeof(uint8_t) = %zu\n", sizeof(uint8_t));
std::printf("sizeof(int16_t) = %zu\n", sizeof(intl6_t));
std::printf("sizeof(uint32_t) = %zu\n", sizeof(uint32_t));

// utilisation slre avec printf :
std::printf("c = %" PRIu32 "\n", c);
return 0;

2.8 Opérations bit a bit

Les opérations bit a bit (bitwise) permettent de manipuler directement les bits d’un entier. Elles sont trés utiles pour
travailler sur des flags, des masques, optimiser des calculs simples, ou pour le traitement bas-niveau de données
(compression, formats binaires, etc.).

Principales opérations en C/C++ :

* &: ET bitabit

* | : OU bit a bit

* ~: XOR (OU exclusif) bit a bit

* ~: NOT (négation) bit a bit

* <<: décalage a gauche (shift left)
* >>: décalage a droite (shift right)

Exemples simples :

unsigned a = 0b1100; // la notation Obxxxx permet de définir une valeur en binaire, ici 1100 en binaire => 12 en
base décimale.
unsigned b = 0b1010; // 1010 en binaire => 10 en décimale

unsigned and_ab = a & b; // 1000 (8)

unsigned or_ab = a | b; // 1110 (14)

unsigned xor_ab = a ~ b; // 0110 (6)

unsigned not_a = ~a; // inversion de tous les bits

// décalements
unsigned left = a << 1; // 11000 (24) : décalage vers la gauche (multiplication par 2)
unsigned right = a >> 2; // 0011 (3) : décalage vers la droite (division par 2)

// affichez en hex / décimale selon besoin

Masques et tests de bits
On utilise des masques pour isoler, définir ou effacer des bits :

unsigned flags = 0;

const unsigned FLAG_A = 1u << @; // bit 0 —> 0b0001
const unsigned FLAG_B = 1lu << 1; // bit 1 —> 0bo010o
const unsigned FLAG_C = 1u << 2; // bit 2 —> 0b0100

// activer un flag
flags |= FLAG_B; // flags = 0b0010

33

// tester si un flag est activé
bool hasB = (flags & FLAG_B) != 0;

// désactiver un flag
flags &= ~FLAG_B; // efface le bit 1

// basculer (toggle) un flag
flags ~= FLAG_C; // inverse l'état du bit 2

Conseils importants

+ Utilisez des types non signés (unsigned, uint32_t, uint64_t) pour les opérations bit a bit : le comportement des
décalages sur des entiers signés négatifs peut étre indéfini ou dépendre de I’implémentation.

» Le décalage a gauche x << n multiplie par 2~n lorsque cela ne provoque pas de débordement. Le décalage a
droite x >> n divise par 2~n pour les types non signés.

* Pour isoler un octet dans un mot (utile pour endianness ou extraction) :

uint32_t w = 0x12345678;

uint8_t byte@d = (w >> @) & OxFF; // 0x78 (LSB)
uint8_t bytel = (w >> 8) & OxFF; // 0x56
uint8_t byte2 = (w >> 16) & OxFF; // 0x34
uint8_t byte3 = (w >> 24) & OxFF; // 0x12 (MSB)

Utiliser std::bitset pour afficher/manipuler des bits de fagon sire et lisible :

#include <bitset>
#include <iostream>

std::bitset<8> bs(0b10110010);

std::cout << bs << "\n"; // affiche 10110010
bs.flip(@); // bascule le bit 0

bs.set(3); // met a 1 le bit 3
bs.reset(7);// met a @ le bit 7

2.9 Résumé

* Les types classiques couvrent les entiers signés/non signés, les flottants et les caractéres.
* Leur taille n’est pas toujours fixe (sauf char = 1 octet garanti).
* sizeof permet de connaitre précisément la taille d’un type ou d’une variable sur une architecture donnée.

34

3 Pointeurs

3.1 Notion de stockage et d’adressage en mémoire
La mémoire d’un ordinateur peut étre vue comme un grand tableau linéaire de cases.

» Chaque case contient un octet (soit 8 bits).
» Chaque case posseéde une adresse unique, qui est un nombre permettant d’y accéder.

On peut donc imaginer la mémoire comme une succession de cases numeérotées :

Adresse Contenu

1000 10101010

1001 00001111

1002 11110000

1003 01010101
Ici:

* chaque ligne représente un octet de mémoire,
* I’adresse (1000, 1001, ...) est un entier géré par le processeur,
* le contenu est un ensemble de 8 bits (e ou 1).

Adresses et variables

Quand on déclare une variable en C++ :

int a = 42;

* Le compilateur réserve 4 octets consécutifs (sur une architecture 32 bits ou 64 bits).
 Supposons que la variable commence a I’adresse 1000. La mémoire peut ressembler a ceci :

Adresse Contenu

1000 00101010 (0x2A)
1001 00000000
1002 00000000
1003 00000000
Ainsi :

* la variable a est vue comme un tout (42),
+ mais en réalité, elle est stockée sous forme de quatre octets successifs en mémoire.

Taille et alignement

 char : 1 octet

* short : 2 octets

* int : 4 octets (le plus souvent)
* long long : 8§ octets

* float : 4 octets

* double : 8 octets

Remarque: La taille peut varier selon 1’architecture, mais 1 octet = 8 bits est garanti.
Par souci de performance, le compilateur peut introduire du padding (remplissage avec des 0) pour que certaines
variables commencent & des adresses multiples de 2, 4 ou 8. Cela facilite I’accés mémoire pour le processeur.

35

Importance de I’adresse

L’adresse mémoire est ce qui permet :

+ d’identifier précisément ou se trouve une variable,
« d’accéder a ses octets,
* de manipuler des structures de données complexes.

Exemple d’analogie

On peut comparer la mémoire :

+ a une bibliothéque ou chaque case mémoire serait un livre,
* ’adresse est le numéro du rayon + numéro du livre,
* le contenu est I’information écrite dans ce livre (les bits).

Pour accéder a une donnée, le processeur doit connaitre I’adresse exacte.

Résumé

+ La mémoire est organisée en cases de 1 octet (8 bits).

+ Chaque case posséde une adresse unique.

* Les variables occupent une ou plusieurs cases consécutives.

* Les adresses permettent au processeur de retrouver et manipuler ces valeurs.

+ Cette vision est essentielle pour comprendre comment fonctionnent les pointeurs et 1’allocation mémoire
dynamique.

3.2 Adresse d’une variable

Chaque variable en mémoire posseéde une adresse, c’est-a-dire la position de son premier octet dans le grand tableau
de lamémoire. Enlangage C (et donc aussi en C++), on peut accéder a cette adresse grace a I’opérateur & (dit adresse
de).

Exemple simple

#include <stdio.h>

int main() {
int a = 42;

printf("Valeur de a : %d\n", a);
printf("Adresse de a : %p\n", &a);

return 0;

Sortie possible (I’adresse dépend de I’exécution et de la machine) :

Valeur de a : 42
Adresse de a : 0x7ffee3b5adc

* sd affiche la valeur entiére (42 ici).
* s%p affiche une adresse mémoire (format pointeur).
* ga signifie “I’adresse de la variable a”.

Lecture et écriture via la fonction C scanf

Quand on utilise scanf, on doit fournir I’adresse de la variable dans laquelle stocker le résultat.

36

#include <stdio.h>

int main() {
int age;

printf("Entrez votre age : ");
scanf("%d", &age); // &age = adresse de age

printf("Vous avez %d ans.\n", age);

return 0;

* Ici scanf("sd", &age) place la valeur lue directement dans la case mémoire de age.
* Sionavait écrit scanf("%d", age) (sans &), le programme plantera, car scanf a besoin de I’adresse pour modifier
la variable.

Observation de I’adresse

On peut constater que deux variables successives en mémoire ont des adresses différentes, séparées par leur taille
en octets.

#include <stdio.h>
int main() {
int x = 10;
int y = 20;

printf("Adresse de x : %p\n", &x);
printf("Adresse de y : %p\n", &y);

return 0;

Exemple de sortie :

Adresse de x : 0x7ffee3b5a98
Adresse de y : Ox7ffee3b5a%4

Remarque: Les adresses sont proches mais pas forcément dans 1’ordre croissant, car le compilateur et le systéme
peuvent organiser les variables différemment (pile, alignement mémoire, etc.).

3.3 Passage d’argument

Passage par valeur (comportement par défaut)
En C et C++, les arguments des fonctions sont passés par valeur :

* Quand on appelle une fonction, le programme crée une copie de la variable dans la mémoire de la fonction.
 La fonction travaille donc sur sa propre copie.

Exemple :

#include <stdio.h>

void increment(int x) {
x = x + 1; // modifie uniquement la copie locale

b

int main() {
int a = 5;
increment(a);
printf("a = %d\n", a); // affiche toujours 5
return 0;

37

Explication mémoire :

* a dans main occupe une zone mémoire.
* Lors de I’appel increment(a), la valeur 5 est copiée dans une nouvelle variable x locale a la fonction.
* Modifier x ne change pas a, car ce sont deux variables indépendantes.

Passage par adresse avec un pointeur

Si on veut qu’une fonction puisse modifier la variable originale, il faut lui transmettre non pas la valeur, mais
P’adresse de la variable.
Exemple :

#include <stdio.h>

void increment(intx p) {
*p = xp + 1; // modifie la valeur a l'adresse pointée

b

int main() {
int a = 5;
increment(&a); // on passe l'adresse de a
printf("a = %d\n", a); // affiche 6
return 0;

Explication détaillée :
1. Dans main, on a la variable a (valeur 5) stockée a une certaine adresse mémoire (par ex. 1000).
2. D’expression &a produit cette adresse (1000).
3. Lors de I’appel increment(&a), ce n’est pas a qui est copié, mais son adresse (1000).
* La fonction regoit donc un poeinteur p, qui est une copie de 1’adresse.
4. A ’intérieur de inc rement, xp signifie « la valeur contenue a 1’adresse p ».

* Donc #p = #p + 1; va chercher la valeur 5 a I’adresse 1000, I’incrémente, et stocke 6 a la méme place.

5. Comme p désigne la mémoire de a, la variable a est réellement modifice.

Résumé des mécanismes

+ Passage par valeur : on copie la valeur dans une nouvelle variable locale. La variable d’origine n’est jamais

modifiée.
+ Passage par adresse (pointeur) : on copie I’adresse dans un pointeur. La fonction a donc accés a la méme
zone mémoire, et peut modifier la variable originale via xp.

Schéma (simplifi¢ en ASCII) :

main:
a=>5 (adresse 1000)

Appel increment(&a)
copie de l'adresse 1000 dans p

increment:

p = 1000

*p - valeur stockée a 1'adresse 1000 - 5

*p = 6 (modifie la mémoire partagée avec a)

38

Bonnes pratiques avec les pointeurs

Un pointeur est une variable qui contient une adresse mémoire. Cependant, si un pointeur n’est pas initialisé, il peut
contenir une adresse aléatoire, ce qui conduit a des comportements imprévisibles (segmentation fault, corruption
mémoire).

Régle essentielle : toujours initialiser les pointeurs.

En C++ moderne, on utilise nullptr pour indiquer qu’un pointeur ne pointe vers rien :

#include <iostream>

int main() {
intx p = nullptr; // pointeur initialisé, mais ne pointe vers rien

if(p == nullptr) {
std::cout << "Le pointeur est vide, pas ’'dacces dangereux." << std::endl;

b

return 0;

Exemple de mauvaise pratique

intx p; // pointeur non initialisé (dangereux !)
*xp = 10; // comportement indéfini - crash probable

Ici, p contient une valeur indéterminée : accéder a *p est dangereux.

Exemple correct

intx p = nullptr; // pointeur s(r, mais vide
if(p !'= nullptr) {
*p = 10; // on accéde uniquement si p pointe vers une variable valide
+
Résumé

+ Toujours initialiser vos pointeurs (avec nullptr par défaut).

* Toujours vérifier qu’un pointeur n’est pas nul avant de ’utiliser.

* Préférez les références (&) ou les conteneurs modernes (std: :vector, std::unique_ptr, std::shared_ptr) quand
c’est possible, afin d’éviter les erreurs de gestion mémoire.

3.4 Cas des tableaux contigus

Tableaux C

En C et C++, un tableau est toujours stocké en mémoire comme une suite contigué d’octets. Cela signifie que les
¢éléments se suivent les uns aprés les autres, sans espace entre eux.
Exemple :

#include <stdio.h>

int main() {
int tab[3] = {10, 20, 30};

printf("Adresse de tab[@] : %p\n", &tabl0]);
printf("Adresse de tab[1] : %p\n", &tabl[1]);
printf("Adresse de tab[2] : %p\n", &tabl[2]);

return 0;

39

Sortie possible :

Adresse de tab[@] : 0x7ffee6c4a90
Adresse de tab[1] : @x7ffee6c4ad4
Adresse de tab[2] : @x7ffee6c4a98

On remarque que les adresses sont espacées de 4 octets (la taille d’un int), ce qui confirme la contiguité mé-
moire.

Arithmétique des pointeurs

Le nom d’un tableau (tab) est automatiquement converti en pointeur vers son premier élément (stab(e]). On peut
alors utiliser ’arithmétique des pointeurs :

* p + N : décale le pointeur de N éléments.
e x(p + N) : acceéde a la valeur du N-iéme élément.

Cela revient exactement a écrire tab[N].
Exemple :

#include <stdio.h>

int main() {
int tab[3] = {10, 20, 30};
intx p = tab; // équivaut a &tab[0]

printf("sd\n", x(p + @)); // 10
printf("sd\n", x(p + 1)); // 20
printf("sd\n", x(p + 2)); // 30

return 0;

Ces deux écritures sont équivalentes :

tab[i] <=> x(tab + 1)

Schéma mémoire (exemple avec tab[3])

Adresse : 1000 1004 1008
Contenu : 10 20 30
Indice : tab[@] tab[1] tabl[2]

p = 1000
*(p+0) - valeur a 1000 - 10
*(p+1) - valeur a 1004 - 20
*(p+2) - valeur a 1008 - 30

Adaptation a la taille mémoire des éléments

La contiguité mémoire s’applique a tout type de tableau, pas seulement aux entiers. Si on définit un tableau d’objets
plus volumineux (par exemple des double ou des struct), les éléments restent stockés les uns a la suite des autres.

Exemple avec double

#include <stdio.h>

int main() {
double tab[3] = {1.1, 2.2, 3.3};

printf("Adresse de tab[@] : %p\n", &tab[0]);
printf("Adresse de tab[1l] : %p\n", &tabl[1]);

40

printf("Adresse de tab[2] : %p\n", &tabl[2]);

return 0;

Sortie possible (chaque double = 8 octets) :

Adresse de tab[0] : 0x7ffee6c4a90
Adresse de tab[1] : @x7ffee6c4a98
Adresse de tab[2] : 0x7ffee6c4aad

On voit que les adresses sont espacées de 8, car un double occupe 8 octets.

En C/C++, ’expression p + N ne signifie pas “ajouter N octets”, mais “aller au N-iéme élément a partir de p”.

* Sip est de type intx et que sizeof(int) == 4, alors :

p+1 - avance de 4 octets
p +2 - avance de 8 octets

* Sip est de type doublex et que sizeof(double) == 8, alors :

p+1 - avance de 8 octets
p + 2 - avance de 16 octets

* De maniére générale :

Adresse(p + N) = Adresse(p) + N x sizeof(type)

C’est le compilateur qui traduit I’opération en calcul d’adresse, et c’est le processeur qui fait I’addition lors de
I’exécution.

Tableaux dynamiques en C++ : std: :vector

En C++ moderne, on utilise std: :vector plutdt que des tableaux statiques, car il offre :

* une taille dynamique (on peut ajouter des éléments avec push_back),
* une gestion automatique de la mémoire,
+ et il conserve la contiguité mémoire.

Exemple :

#include <iostream>
#include <vector>

int main() {
std::vector<int> v = {10, 20, 30};

std::cout << "Adresse de v[0] : " << &vI[0] << std::endl;

std::cout << "Adresse de v[1] : " << &v[1l] << std::endl;

std::cout << "Adresse de v[2] : " << &v[2] << std::endl;
+

Sortie typique :

Adresse de v[0] : ox7ffee6c4a90
Adresse de v[1] : 0x7ffee6c4a94
Adresse de v[2] : @0x7ffee6c4ad8

On observe la méme contiguité qu’avec les tableaux classiques.

41

Arithmétique des pointeurs sur std: :vector

On peut récupérer un pointeur sur les données internes grace a v.data() ou &v[el, puis utiliser la méme logique que
pour les tableaux C.

#include <iostream>
#include <vector>

int main() {
std::vector<int> v = {10, 20, 30};
intx p = v.data(); // pointeur vers le premier élément

std::cout << *(p+@) << std::endl; // 10
std::cout << x(p+1) << std::endl; // 20
std::cout << x(p+2) << std::endl; // 30

Résumé

¢ Les tableaux C et les std: :vector stockent leurs éléments de fagcon contigué.

* Cela permet un acces rapide par indice (tablil) ou via I’arithmétique des pointeurs (x(p+i)).

* Les std::vector offrent en plus une taille dynamique et une gestion stire de la mémoire, mais conservent les
mémes propriétés fondamentales de contiguite.

3.5 Contiguité dans les classes et struct

En C et C++, les structures (struct) et classes regroupent plusieurs variables (membres) dans un seul bloc mémoire.
Par défaut, les champs sont rangés les uns a la suite des autres, ce qui garantit une contiguité mémoire.

Exemple simple

#include <stdio.h>

struct Point2D {
int x;
int y;

1

int main() {
struct Point2D p = {1, 2};

printf("Adresse de p.x : %p\n", &p.x);
printf("Adresse de p.y : %p\n", &p.y);

return 0;

Sortie possible :

Adresse de p.x : Ox7ffee3b5a90
Adresse de p.y : 0x7ffee3b5a9%4

Ici, les deux entiers x et y (4 octets chacun) sont stockés 1'un aprés I’autre de maniére contigué.

Padding et alignement

Pour des raisons de performance, le compilateur peut insérer des octets de padding entre les membres afin de
respecter un alignement mémoire optimal.
Exemple :

42

struct Test {
char a; // 1 octet
int b; // 4 octets
+

Organisation en mémoire :

Adresse Contenu

1000 a (1 octet)

1001-1003 padding (3 octets inutilisés)
1004-1007 b (4 octets)

Exemple avec plusieurs champs

struct Mixed {

char c; // 1 octet
double d; // 8 octets
int i; // 4 octets

18

Disposition typique sur une machine 64 bits :

Adresse Champ

1000 c (1 octet)

1001-1007 padding (7 octets)

1008-1015 d (8 octets)

1016-1019 i (4 octets)

1020-1023 padding (4 octets pour alignement global)

Taille totale : 24 octets.

Contiguité dans les classes

En C++, une class se comporte comme une struct du point de vue mémoire :

* Les membres de données sont placés contigus, avec les mémes régles de padding et d’alignement.
+ La différence entre struct et class est uniquement dans la visibilité par défaut (public vs private).

std: :vector de structures

En C++ moderne, on peut stocker plusieurs objets struct ou class dans un std::vector. Le vector garantit que les
¢léments sont placés contigus en mémoire, exactement comme pour un tableau C.
Exemple :

#include <iostream>
#include <vector>

struct Point2D {
int x;
int y;

+

int main() {

std::vector<Point2D> points = {{1,2}, {3,4}, {5,6}};

std::cout << "Adresse du premier Point2D : " << &points[@] << std::endl;
std::cout << "Adresse du deuxiéme Point2D : " << &points[1] << std::endl;
std::cout << "Adresse du troisieme Point2D : " << &points[2] << std::endl;

43

Schéma ASCII d’un std: :vector<Point2D>

Chaque Point2b occupe sizeof (Point2D) octets (ici, 8 octets : 2 entiers de 4 octets). Les éléments du std::vector sont
rangés dos a dos en mémoire :

Mémoire d'un std::vector<Point2D> avec 3 é1léments

Adresse : 2000 2008 2016
Contenu : [x=1, y=2] [x=3, y=4] [x=5, y=6]
Taille : 8 octets 8 octets 8 octets

On voit que chaque élément est un bloc structuré, mais que les blocs restent contigus.

Résumé

* Les champs d’une struct ou class sont stockés contigus, avec du padding éventuel pour respecter I’alignement.

* La taille réelle peut étre plus grande que la somme des champs.

* Un std: :vector<struct> permet de créer un tableau dynamique de structures également contigu en mémoire.

+ Cette contiguité rend possible un parcours rapide en mémoire et une compatibilité avec des fonctions C via
points.data().

3.6 Organisation mémoire AoS vs S0A

Lorsque I’on manipule des données structurées en grande quantité (par exemple des coordonnées 3D, des particules,
des sommets en graphique), il existe deux fagons classiques d’organiser les données en mémoire :

Array of Structs (AoS)

C’est la représentation classique avec un std: :vector<struct>. Chaque élément du tableau est une structure compléte.
Exemple :

struct Point3D {
float x, y, z;
18

std::vector<Point3D> points = {
{1.ef, 2.0f, 3.0f},
{4.0f, 5.0f, 6.0},
{7.0f, 8.0f, 9.0f}

i

Mémoire (chaque Point3p = bloc contigu de 12 octets) :

[x=1, y=2, z=3] [x=4, y=5, z=6] [x=7, y=8, z=9]

Ici, la contiguité s’applique au niveau des structures :

* Les Point3p sont rangés dos a dos.
» Chaque point3p lui-méme contient ses champs x, y, z contigus.

Avantage : pratique pour manipuler un point complet. Inconvénient : si I’on ne veut traiter que les x, il faut
parcourir inutilement les y et z.

Struct of Arrays (SoA)

Ici, on inverse I’organisation : au lieu de stocker un tableau de structures, on stocke une structure qui contient un
tableau par champ.
Exemple :

struct PointsSoA {
std::vector<float> x;
std::vector<float> y;
std::vector<float> z;

44

Mémoire (chaque champ est contigu séparément) :

x : [1, 4, 7]
y : [2, 5, 8]
z : [3, 6, 9]

Ici, la contiguité s’applique au niveau des champs :

* Tous les x sont stockés les uns a la suite des autres.
* Tous les y sont contigus, et de méme pour les z.

Avantage : tres efficace si I’on fait un traitement massif sur un seul champ (ex. appliquer une transformation
sur toutes les coordonnées x). Inconvénient : moins naturel si I’on veut travailler sur un point complet (x,y,z
regroupes).

Contiguité : deux visions complémentaires

* AoS : contiguité par objet. Chaque élément du tableau est un bloc structuré ({x,y, z}), et les blocs se suivent.
* SoA : contiguité par champ. Chaque champ est regroupé dans son propre tableau, et les valeurs se suivent
par dimension.

Les deux approches utilisent donc la contiguité mémoire, mais pas au méme niveau de structuration.

Choix en pratique

* AoS : souvent préféré quand les données sont manipulées comme des entités indépendantes (ex. liste de
particules, objets de jeu, vecteurs 3D dans un moteur physique).

* SoA : utilisé en simulation haute performance, calcul scientifique, GPU ou traitement de données vec-
torisées, car il favorise les acces séquentiels optimisés (cache, SIMD).

3.7 Allocation et désallocation mémoire

L’allocation mémoire consiste a réserver dynamiquement une zone de mémoire pendant I’exécution du pro-
gramme, et la désallocation consiste a la libérer lorsqu’elle n’est plus nécessaire. Cette gestion dynamique est
indispensable lorsque la taille des données n’est pas connue a la compilation ou lorsque leur durée de vie dépasse
un bloc local.

En C et en C++, la mémoire dynamique est stockée dans une zone appelée le tas (heap), par opposition a la
pile (stack) utilisée pour les variables locales.

Pile (stack) vs tas (heap)

Variables sur la pile :

« allocation automatique a I’entrée d’un bloc,
* libération automatique a la sortie du bloc,

* trés rapide,

* taille limitée.

void f() {
int x = 10; // sur la pile
+

Mémoire dynamique sur le tas :

« allocation explicite par le programmeur,
¢ durée de vie indépendante des blocs,
* doit étre libérée explicitement.

45

Allocation dynamique en C : malloc et free

En C, on utilise les fonctions de la bibliothéque standard <stdlib. h>.

#include <stdlib.h>

intx p = (intkx)malloc(sizeof(int));

Ici:

* malloc réserve un bloc de mémoire de sizeof (int) octets,
+ elle retourne un pointeur de type voids,
* ce pointeur est converti explicitement en intx.

Utilisation :

#include <stdio.h>
#include <stdlib.h>

int main() {
intx p = (intx)malloc(sizeof(int));
if (p == NULL) {
return 1; // échec de 'lallocation

b

*xp = 42;
printf("sd\n", *p);

free(p); // libération
return 0;

Points importants :

* malloc n’initialise pas la mémoire,
* free doit étre appelé exactement une fois pour chaque allocation réussie.

Allocation de tableaux dynamiques en C

intx tab = (intx)malloc(1@ * sizeof(int));

Acces :

tab[0]
tab[1]

1;
2;

Libération :

free(tab);

Allocation dynamique en C++ : new et delete

En C++, on dispose des opérateurs new et delete, qui sont conscients des types et appellent les constructeurs et
destructeurs.

Allocation d’un objet :

int* p = new int(42);

Libération :

delete p;

Pour un tableau :

46

intx tab = new int[10];

Libération correspondante :

delete[] tab;

Reégle fondamentale :

®* new <> delete

* new[] <> deletel]

Les mélanger conduit 2 un comportement indéfini.

Allocation d’objets et appel des constructeurs

struct Point {

float x, y;

Point(float a, float b) : x(a), y(b) {}
+

int main() {
Pointx p = new Point(1.0f, 2.0f); // constructeur appelé
delete p; // destructeur appelé

Exemple classique d’erreur : fuite mémoire

void f() {
intx p = new int(10);
// oubli de delete

A chaque appel de , la mémoire est allouée mais jamais libérée : fuite mémoire.

Double libération (dangereux)

intx p = new int(5);
delete p;
delete p; // ERREUR : double free

Cela provoque un comportement indéfini.

Pointeur nul aprés libération

Bonne pratique :

intx p = new int(5);
delete p;
p = nullptr;

Cela évite I’accés a un pointeur libéré (dangling pointer).

Résumé

+ L’allocation dynamique se fait sur le tas.

* En C : malloc / free (mémoire brute, voids).

* En C++ : new/ delete (types + constructeurs).

+ Toute allocation doit étre associée a une désallocation.

* Les erreurs classiques sont : fuites mémoire, double libération, pointeurs pendants.

47

* En C++ moderne, préférer les conteneurs et les abstractions siires.

La gestion manuelle de la mémoire est puissante mais dangereuse. En C++, elle doit étre limitée aux
cas nécessaires et remplacée autant que possible par des abstractions stires.

3.8 La copie memoire: memcpy

En C et C++, on a souvent besoin de copier un bloc d’octets (tableau, struct, buffer regu du réseau/fichier, etc.).
La fonction standard pour c¢a est memcpy, dans <string.h> (C) ou <cstring> (C++).

Prototype

#include <string.h>

voidx memcpy(voidx dest, const voidx src, size_t n);

* src: adresse source

* dest : adresse destination
* n: nombre d’octets copiés
e retour : dest

Exemple simple : copier un tableau d’entiers

#include <stdio.h>
#include <string.h>

int main() {
int al3] = {10, 20, 30};
int b[3] = {0, 0, 0};

memcpy(b, a, 3 * sizeof(int));

for(int i=0; i<3; ++i)
printf("sd ", bl[il); // 10 20 30
return 0;

Ici, memcpy copie exactement 3 * sizeof(int) octets.

Exemple : copier une structure simple

#include <stdio.h>
#include <string.h>

typedef struct {
int x;
int y;

} Point2D;

int main() {
Point2D pl = {1, 2};
Point2D p2;

memcpy (&p2, &pl, sizeof(Point2D));

printf("sd %sd\n", p2.x, p2.y); // 1 2
return 0;

48

Lire un “buffer brut” et reconstruire des types avec memcpy

Cas typique : on recoit un tableau d’octets (réseau, fichier binaire, capteur...) et on veut en extraire des valeurs
typées.

Supposons un message binaire au format suivant :

* uint32_t id

* float temperature

® uintl6_t count

Soit: 4 + 4 + 2 = 10 octets.

#include <stdint.h>
#include <stdio.h>
#include <string.h>

int main() {
// Buffer brut simulé (par ex. recu du réseau)
uint8_t buf[10] = {
0xD2, 0x04, 0x00, 0x00, // id = 1234 en little-endian
0x00, 0x00, 0x48, 0x42, // float 50.0f en IEEE-754 (little-endian)
0x07, 0x00 // count = 7 en little-endian
I

size_t offset = 0;
uint32_t id;
float temp;

uintl6_t count;

memcpy (&id, buf + offset, sizeof(uint32_t));
offset += sizeof(uint32_t);

memcpy (&temp, buf + offset, sizeof(float));
offset += sizeof(float);

memcpy (&count, buf + offset, sizeof(uintl6_t));
offset += sizeof(uintl6_t);

printf("id=%u, temp=%.2f, count=%u\n", id, temp, count);
return 0;

3.9 Le pointeur générique voidx
En C et en C++, il existe un type de pointeur particulier : voidx, appelé pointeur générique. Un void* peut contenir

P’adresse de n’importe quel type de donnée, sans connaitre sa nature.
Il représente donc une adresse brute, sans information de type associée.

Déclaration et principe

voidx p;

Ici:

* p peut stocker I’adresse d’un int, d’un float, d’une struct, etc.
* le compilateur ne sait pas ce que pointe p.

Cela signifie que :

* on peut stocker une adresse dans p,
* mais on ne peut pas accéder directement a la valeur pointée.

49

Exemple simple

#include <stdio.h>

int main() {
int a = 42;
float b = 3.14f;

voidk p;

p = &; // p pointe vers un int

p = &b; // p pointe maintenant vers un float
return 0;

Dans cet exemple :

* p peut successivement contenir 1’adresse de a puis celle de b,
* mais aucune information de type n’est conservée.

Impossibilité de déréférencer directement

Il est interdit de faire :

voidx p = &a;
printf("sd\n", *p); // ERREUR

Pourquoi ?

* xp signifie « accéder a la valeur pointée »,
 mais le compilateur ne connait ni la taille, ni la nature du type pointé.

Le type void signifie littéralement : absence d’information de type.

Conversion explicite (cast)

Pour accéder a la valeur pointée, il faut convertir explicitement le void« vers le bon type de pointeur.

#include <stdio.h>

int main() {
int a = 42;
voidx p = &a;

intx pi = (intx)p; // cast explicite
printf("sd\n", *xpi); // 0K
return 0;
}
Etapes :

1. p contient I’adresse de a,
2. on indique explicitement au compilateur : « considére cette adresse comme un intx »,
3. on peut alors déréférencer correctement.

Exemple avec plusieurs types

#include <stdio.h>

void print_value(void* data, char type)
{
if (type == 'i') {
printf("int : %d\n", x(intx)data);

50

}
else if (type == 'f') {

printf("float : %f\n", *x(floatx)data);
}

int main() {
int a = 10;
float b = 2.5f;

print_value(&a, 'i');
print_value(&b, 'f');

return 0;

Ici:

* le voidx permet de passer n’importe quel type,

* mais on doit gérer manuellement I’ interprétation correcte.
Lien avec I’arithmétique des pointeurs

Contrairement aux autres pointeurs (intx, doublex, etc.), I’arithmétique des pointeurs est interdite sur void+ en
C++.

voidx p;
p + 1; // ERREUR en C++

Raison :

e p + 1 nécessite de connaitre sizeof(type),
* or void n’a pas de taille.

En C (mais pas en C++), certains compilateurs autorisent void+ comme une extension non standard, en le traitant
comme un chars.

voidx* et tableaux / mémoire brute

Le voidx est souvent utilisé pour manipuler de la mémoire brute, par exemple avec malloc, memcpy, ou des APIs bas
niveau.

Exemple :

#include <stdlib.h>

int main() {
voidx buffer = malloc(100); // 100 octets de mémoire brute

// interprétation explicite
intx tab = (intx)buffer;
tab[0] = 42;

free(buffer);
return 0;

Ici:

* malloc renvoie un voids,

* le programmeur décide ensuite comment interpréter cette mémoire.
Exemple plus complet d’utilisation de voidx

Voici un exemple typique d’utilisation de void+ : on regoit un bloc d’octets brut (réseau, fichier, trame capteur,
image, ...), stocké dans un void*, puis on reconstruit une structure “interprétable”.
Imaginons un serveur qui envoie un message binaire composé de :

51

1. un en-téte (header) avec :

® uint32_t id
® uintl6e_t width
® uintl6_t height

2. puis des données (payload) : ici, par exemple, une image en niveaux de gris de taille width * height octets.
On recoit I’information comme un buffer brut (typiquement void* + taille) que 1’on doit “restructurer”.

* Le principe général est le suivant:

reconnaitre la structure (1’en-téte),

calculer ou commencent les données utiles,

faire des casts (souvent via uints_tx pour faire de 1’arithmétique en octets),
vérifier les tailles (sinon crash / faille).

Rl o

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#pragma pack(push, 1) // pour éviter le padding (dépendant compilateur/ABI)
typedef struct {
uint32_t id;
uintl16_t width;
uint16_t height;
} Header;
#pragma pack(pop)

int main() {

// ——— Simulation : "réception réseau" d'un bloc brut ——-
// On fabrique un buffer qui contient : Header + pixels
Header h = { .id = 1234, .width = 4, .height = 3 };
uint8_t pixels[12] = {

10, 20, 30, 40,

50, 60, 70, 80,

90,100,110,120
b

size_t total = sizeof(Header) + sizeof(pixels);
void* buffer = malloc(total);

memcpy (buffer, &h, sizeof(Header));
memcpy ((uint8_tx*)buffer + sizeof(Header), pixels, sizeof(pixels));

// ——— Reconstruction / interprétation ——
// 1) Lire 1'en-téte

Header header;

memcpy (&header, buffer, sizeof(Header));

printf("id=%u, width=%u, height=%u\n",
header.id, header.width, header.height);

// 2) Accéder au payload (image) aprés l'en-téte
size_t image_size = (size_t)header.width * (size_t)header.height;

// Vérification minimale de cohérence

if (sizeof(Header) + image_size > total) {
printf("Buffer incomplet ou corrompu !\n");
free(buffer);
return 1;

uint8_t* image = (uint8_tx)buffer + sizeof(Header);
// Exemple : afficher les pixels (ligne par ligne)
for (uintl16_t y = 0; y < header.height; ++y) {

for (uintl6_t x = @; x < header.width; ++x) {
printf("%3u ", imagely * header.width + x]);

52

}
printf("\n");
}

free(buffer);
return 0;

Usage en pratique
Le voidx* est principalement utilisé :

+ en C pur (interfaces génériques, bibliotheques systéme),
* pour des APIs bas niveau,

 pour manipuler de la mémoire brute,

* dans des fonctions génériques historiques (qgsort, bsearch).

En C++ moderne, on préfére :

* les templates,

* les pointeurs typés,

* les conteneurs (std: :vector, std: :array),

* les smart pointers (std: :unique_ptr, std::shared_ptr).

Point clé a retenir

voidx est un pointeur sans information de type : il offre une grande flexibilité, mais aucune sécurité.
Toute utilisation correcte repose sur des conversions explicites et la rigueur du programmeur.

3.10 Références

En C++, les références sont introduites comme une alternative plus simple et plus slire aux pointeurs. On peut les
voir comme un alias vers une variable existante, et surtout comme un sucre syntaxique au-dessus de la notion de
pointeur :

« Comme un pointeur, une référence permet de travailler directement sur une variable originale sans en faire
une copie.

+ Contrairement au pointeur, on n’a pas besoin d’écrire = ou -> : la référence se manipule comme la variable
elle-méme.

Passage d’arguments : comparaison valeur, pointeur, référence

Passage par valeur (par défaut en C/C++)

#include <iostream>

int ma_fonction(int b) {
b=>b+ 2; // modifie la copie locale
return b;

}

int main() {
int a = 5;
int ¢ = ma_fonction(a);
std::cout << a << ", " << c << std::endl; // a=5, c=7

Ici:

* b est une copie de a.
* Modifier b n’affecte pas a.

53

Passage par adresse avec pointeur (style C)

#include <iostream>

void ma_fonction(intx b) {
*xb = xb + 2; // modifie la valeur pointée

}

int main() {
int a = 5;
ma_fonction(&a); // on passe 'ladresse de a
std::cout << a << std::endl; // affiche 7

Ici:

* b est une copie du pointeur vers a.
* On doit utiliser b pour accéder/modifier la valeur.
 Syntaxe plus lourde, avec risque d’erreurs (pointeur nul, oubli du).

Passage par référence (style C++)

#include <iostream>

void ma_fonction(int& b) {
b=b+ 2; // on a 'limpression de manipuler b comme une variable

}

int main() {
int a = 5;
ma_fonction(a); // pas de &
std::cout << a << std::endl; // affiche 7

Ici :

* b est une référence alias de a.
* Pas de syntaxe particuliére, on manipule b comme s’il s’agissait d’une variable locale.

« C’est un sucre syntaxique : derriere, le compilateur génére un passage par adresse, mais la syntaxe est sim-
plifiée.

Initialisation des références

Une référence doit toujours étre initialisée au moment de sa déclaration :

int main() {

int a = 5;

int& ref_a = a; // OK : ref_a est un alias de a

ref_a = 9; // modifie a

int& ref_b; // ERREUR : une référence doit étre initialisée

Contrairement a un pointeur, une référence :

* ne peut pas étre nulle,
* ne peut pas étre réassignée vers une autre variable aprés initialisation.

Références constantes

Une référence constante (const &) permet de :

* ¢viter une copie cotiteuse,
* tout en garantissant que 1’objet ne sera pas modifié.

54

#include <iostream>
#include <string>

void printMessage(const std::string& msg) {
std::cout << msg << std::endl;

¥

int main() {
std::string text = "Bonjour";
printMessage(text); // pas de copie, et sécurité garantie

Les références constantes sont largement utilisées pour passer des objets volumineux (vecteurs, chaines, struc-
tures) sans copie.

Exemple concret : vecteurs et structures

#include <iostream>

struct vec4 {
double x, y, z, w;

18

// passage par référence pour modifier
void multiply(vec4& v, double s) {
V.X %= S; V.y %= S; V.Z %= S; V.W *= S;

}

// passage par référence constante pour éviter une copie
void print(const vec4& v) {

stdiicout << vox << " " << vy << " " << v,z << " " << v.w << std::endl;
+
int main() {

vecd v = {1.1, 2.2, 3.3, 4.4};

multiply(v, 2.0); // modifie v

print(v); // affiche sans recopier

Accesseurs par référence

En C++, les références sont tres pratiques pour écrire des accesseurs :

class Vec50 {
private:
float T[50];
public:
void init() {
for(int k=0; k<50; ++k)
T[k] = static_cast<float>(k);

// accesseur read-only
float value(unsigned int i) const {
return T[i];

b

// accesseur read/write : retourne une référence
float& value(unsigned int i) {
return TI[i];
}
i

int main() {
Vec50 v;

55

v.init();

std::cout << v.value(10) << std::endl; // lecture
v.value(10) = 42; // écriture via référence
std::cout << v.value(10) << std::endl;

Bonnes pratiques
A faire

« Utiliser les références pour simplifier le code par rapport aux pointeurs.
« Utiliser const & pour passer des objets lourds (vecteurs, chaines, classes).
* Retourner une référence si I’objectif est d’autoriser la modification (accesseur set).

A éviter

* Ne pas abuser des références non-const dans les paramétres de fonction — le lecteur doit comprendre immé-
diatement si une variable est modifiée.
* Ne jamais retourner une référence vers une variable locale (elle n’existe plus aprés la sortie de la fonction).

Résumé

» Une référence est un alias d’une variable.

+ Elle est implémentée comme un pointeur, mais avec une syntaxe simplifiée (syntactic sugar).

* Les références constantes (const &) sont fondamentales pour écrire du code sir et efficace.

* Bien utilisées, les références combinent la puissance des pointeurs et la lisibilité d’un code clair.

3.11 Allocation dynamique

Jusqu’ici, nous avons vu des variables automatiques (déclarées dans une fonction), stockées sur la pile (stack) et
détruites automatiquement a la fin du bloc.

Mais dans certains cas, on a besoin de données dont la durée de vie dépasse la fin d’un bloc (par exemple :
conserver un tableau créé dans une fonction, gérer de grandes structures, ou construire des graphes dynamiques).
Dans ce cas, on utilise la mémoire dynamique, allouée sur le tas (heap).

La pile (stack) vs le tas (heap)

Caractéristique Pile (stack) Tas (heap)

Allocation Automatique Manuelle (ou contrélée par objets)
Durée de vie Limitée au bloc courant Jusqu’a libération explicite

Taille maximale Limitée (quelques Mo) Tres grande (plusieurs Go)
Gestion Par le compilateur Par le programmeur

Exemple int a; OU int tab[10]; new int; OU new int[n];

Sur la plupart des systémes, la pile a une taille limitée (~8 Mo par défaut), alors que le tas peut utiliser plusieurs
gigaoctets. L’allocation dynamique permet donc de créer des structures volumineuses ou de tailles variables a
I’exécution.

Exemple : durée de vie limitée avec variables automatiques

#include <iostream>
intx createValue() {

int a = 42; // variable locale sur la pile
return &a; // 0 Dangereux : a est détruit a la fin de la fonction

56

int main() {
intx p = createValue();
std::cout << xp << std::endl; // comportement indéfini !

a est détruit a la sortie de createvalue(). Le pointeur retourné devient dangling (dangereux).

Exemple : durée de vie prolongée avec allocation dynamique

#include <iostream>

intx createValue() {
intx p = new int(42); // alloué sur le tas
return p; // valide méme aprés la fin de la fonction

}

int main() {
intx q = createvValue();
std::cout << xq << std::endl; // 42
delete q; // libération obligatoire

Ici, la variable xq persiste apres la fin de createvatlue(). Mais le programmeur doit libérer 1a mémoire avec
delete.

Allocation dynamique d’un tableau

#include <iostream>

intx createArray(int n) {
intx arr = new int[nl; // allocation de n entiers
for(int i=@; i<n; ++i)
arr[i] = i x 10;
return arr;

int main() {
int n = 5;
intx arr = createArray(n);

for(int i=0; i<n; ++i)
std::cout << arr[i] << " ';

delete[] arr; // libération obligatoire

Utilité : n est connu uniquement a I’exécution — impossible d’utiliser un tableau statique.

Schéma mémoire

Pile (stack) Tas (heap)

int main() { new int[3]
intn=3 @
intx arr = new int[nl; -— | @0 | 1 | 2 |

+

* La pile contient les variables locales (n, arr).
* Le tas contient les données allouées dynamiquement.
+ La mémoire du tas n’est pas libérée automatiquement — deletell arr; obligatoire.

57

Problémes classiques

1. Fuite mémoire :

void f() {
intx p = new int(10);
// oubli de delete - fuite mémoire

— la mémoire reste occupée tant que le programme tourne.

2. Double libération :

int* p = new int(5);
delete p;
delete p; // erreur : libération double

3. Utilisation aprés libération :

intx p = new int(5);
delete p;
std::cout << xp; // comportement indéfini

Exemple : redimensionnement (principe)

Quand on redimensionne un tableau dynamique manuellement, il faut :

1. Allouer un nouvel espace.
2. Copier les anciennes données.
3. Libérer I’ancien espace.

Ancien tableau (@100) : [10 20 30]
Nouveau tableau (@320) : [10 20 30 40]
delete[] @100

Note: Le réallongement d’un tableau demande toujours une nouvelle allocation + copie, d’ou le cofit.
Les conteneurs modernes (std: :vector) automatisent ce processus efficacement.

Structures dynamiques : listes et graphes

L’allocation dynamique permet aussi de créer des structures chainées ou hiérarchiques, ot chaque élément contient
des pointeurs vers d’autres.

Exemple : liste chainée minimale

struct Node {
int value;
Nodex next;
1

int main() {
Nodex nl = new Node{5, nullptr};
Nodex n2 = new Node{8, nullptr};
// Remarque : l'opérateur "—>' permet d'accéder a un membre via un pointeur.
// ‘p—->membre’ est équivalent a ' (%*p).membre’.
nl->next = n2;

// parcours
for(Nodex p = nl; p != nullptr; p = p—>next)

std::cout << p->value << " ";

// libération
delete n2;

58

delete nl;

Chaque ¢élément (Node) est alloué séparément sur le tas. [Attention]: Il faut penser a libérer chaque élément
pour éviter les fuites.

Bonnes pratiques modernes

En C++, on évite aujourd’hui new / delete directs. On privilégie :

1. std: :vector pour les tableaux dynamiques

Exemple:

#include <vector>
#include <iostream>

std::vector<int> createVector(int n) {
std::vector<int> v(n);
for(int i=0; i<n; ++i)
v[i] = i % 10;
return v; // gestion automatique

int main() {

auto v = createVector(5);
for(int x : v)

std::cout << x <<

— La mémoire est gérée automatiquement (constructeur / destructeur).

2. Pointeurs intelligents (std: :unique_ptr, std: :shared_ptr)

Les pointeurs intelligents sont des classes de la bibliothéque standard C++ (<memory>) qui encapsulent un poin-
teur brut (Tx) et gérent automatiquement la durée de vie de la ressource pointée.

Ils suivent le principe du RAII : la ressource est libérée automatiquement quand le pointeur sort de portée
(destruction de 1’objet). Ainsi, plus besoin d’appeler delete manuellement : la mémoire est libérée dés que 1’objet
n’est plus utilisé.

Exemple avec std: :unique_ptr Exemple:

#include <memory>
#include <iostream>

int main() {
std::unique_ptr<int> p = std::make_unique<int>(42);
std::cout << *p << std::endl;

} // delete automatique ici

Explication :

* std::unique_ptr<int> posseéde I’exclusivité de la ressource : un seul pointeur geére 1’objet alloué.

* std::make_unique<int>(42) crée dynamiquement un int contenant 42 et renvoie un unique_ptr qui en devient
propriétaire.

* Quand p sort de portée (fin du main), son destructeur appelle automatiquement detete sur 1’objet qu’il gére.

* La mémoire est donc proprement libérée, méme en cas d’exception ou de sortie prématurée de la fonction.

Caractéristiques de std: :unique_ptr :

* Ownership unique (non copiable).
+ Léger, sir et trés performant.
+ Idéal pour représenter la possession exclusive d’une ressource.

59

Exemple avec std: :shared_ptr Exemple:

#include <memory>
#include <iostream>

int main() {
auto pl = std::make_shared<int>(10);
auto p2 = pl; // partage de la ressource
std::cout << *p2 << std::endl;
} // mémoire libérée quand le dernier shared_ptr disparait

Explication détaillée :

* std::shared_ptr permet a plusieurs pointeurs de partager la méme ressource.
» Chaque copie (p2 = p1;) augmente un compteur de référence interne.
* Lorsqu’un shared_ptr est détruit, le compteur est décrémenté.

* Quand ce compteur atteint zéro (plus aucun propriétaire), le destructeur appelle detete automatiquement
sur la ressource.

Ainsi, la mémoire est libérée exactement quand elle n’est plus utilisée par personne.
Caractéristiques de std: :shared_ptr :

» Copiable : plusieurs instances peuvent pointer vers la méme donnée.

» Référence comptée : destruction automatique quand le dernier propriétaire disparait.
+ Légeérement plus coliteux qu’un unique_ptr (compteur atomique interne).

+ Idéal pour des structures partagées ou des graphes non hiérarchiques.

Comparaison des deux types de pointeurs intelligents

Partage de
Type Copiableessource Destruction Cas d’usage typique
std::unique_ptr<dNon Non Automatique, dés que le Possession exclusive (ex.
pointeur sort de portée composant interne d’un objet)
std::shared_ptr<@ui Oui (compteur de Automatique, quand le dernier ~ Ressources partagées entre
références) pointeur est détruit plusieurs objets ou fonctions
Illustration mémoire r
Cas unique_ptr :
| unique_ptr<int> p —| [42]
|
delete automatique a la fin du bloc
Cas shared_ptr :
| shared_ptr<int> p1 —| | compteur = 2

| shared_ptr<int> p2 —J—| [10]

delete automatique quand compteur = @

Pourquoi les pointeurs intelligents remplacent new et delete

« IIs évitent les fuites mémoire en gérant la libération automatiquement.

+ Ils préservent la sécurité (pas de double libération ni de pointeur pendu).

* Ils simplifient le code : plus besoin d’appeler delete.

« Ils s’intégrent naturellement avec les autres classes du C++ moderne (std: :vector, std: :map, std: : thread, etc.).

60

4 Classes

4.1 Introduction

En C++, une classe permet de regrouper dans une méme entité des données (appelées attributs) et des fonctions
(appelées méthodes) qui manipulent ces données. Une instance d’une classe est appelée un objet. Cette organisation
facilite la structuration du code, sa lisibilité et sa maintenance.

Regrouper des données : premier exemple avec struct

On commence souvent par une struct pour représenter un objet simple :

struct vec3 {
float x;
float y;
float z;
18

Ici, vec3 regroupe trois valeurs représentant un vecteur 3D. Les membres sont publics par défaut, ce qui signifie
qu’ils sont accessibles directement :

vec3 v;

v.x = 1.0f;
V.y = 2.0f;
v.z = 3.0f;

Ce type de structure est bien adapté pour des agrégats de données simples, trés fréquents en informatique
graphique.

Ajouter un comportement : méthodes

Une classe ou une struct peut aussi contenir des fonctions membres :

#include <cmath>

struct vec3 {
float x, y, z;

float norm() const {
return std::sqrt(xxx + yxy + zxz);
}
18

La méthode norm() opére directement sur les attributs x, y et z de I’objet :

vec3 v{l.0f, 2.0f, 2.0f};
float n = v.norm(); // n =3

Remarque : le const placé aprés la signature d’une méthode (ici norm() const) indique que la méthode ne modifie
pas I’état de I’objet. Une méthode const peut étre appelée sur un objet const, et le compilateur interdit toute
modification des membres non mutable a I’intérieur de cette méthode.

Le pointeur implicite this

Dans les méthodes d’une classe, le compilateur fournit implicitement un pointeur nommé this qui pointe vers
I’objet courant. Il est utile pour accéder explicitement aux membres, désambiguiser des paramétres et retourner
une référence sur 1’objet.

Exemple :

struct S {
int x;
void set(int x) { this—>x = x; } // désambiguise le champ x

61

int get() const { return this->x; } // this est const

18

Cette notion est basique mais importante : this permet de manipuler I’objet courant a I’intérieur des méthodes
et rend explicite certaines opérations (transfert de ownership, retour de xthis, ...).

struct vs class

Le mot-clé class fonctionne exactement comme struct, a la différence que : les membres sont privés par défaut.

class vec3 {
float x, y, z; // privés par défaut
+

Ce code ne compile pas :

vec3 v;
v.x = 1.0f; // ERREUR : x est privé

Pour rendre certains membres accessibles, il faut préciser les niveaux d’acces.

Attributs publics et privés

On utilise les mots-clés public et private pour contrdler I’accés aux membres :

class vec3 {
public:
vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

float norm() const {
return std::sqrt(xkx + yxy + zxz);

b

private:
float x, y, z;
18

Utilisation :

vec3 v(1l.0f, 2.0f, 2.0f)

float n = v.norm(); // OK
// v.x = 3.0f; // ERREUR : x est privé

Ici :

* les attributs sont privés — protégés contre des modifications incontrolées,
* les méthodes sont publiques — interface accessible a I’utilisateur.

Encapsulation et sécurité

Grace a cette encapsulation, 1’objet garantit sa cohérence interne. Par exemple, on peut forcer certaines regles :

class Circle {
public:
Circle(float radius) {
set_radius(radius);

b

float area() const {
return 3.14159f *x r x r
}

void set_radius(float radius) {
if (radius > 0.0f)
r = radius;

62

private:
float r;
i

Ici, le rayon ne peut jamais devenir négatif, car I’accés direct a r est interdit.
b 2

Bonnes pratiques

« Utiliser struct pour :

— des objets simples,
— principalement porteurs de données,
— sans invariants complexes.

« Utiliser ctass pour :

— encapsuler des données,
— contrdler les acces,
— garantir des invariants internes.

4.2 Initialization, constructeurs

En C++, I'initialisation d’un objet est prise en charge par les constructeurs. Un constructeur est une fonction
spéciale (méme nom que la classe, pas de type de retour) appelée automatiquement a la création de 1’objet. Son but
est de garantir que I’objet est dans un état valide dés le départ.

Probléme classique : attributs non initialisés

Si une classe/struct contient des types fondamentaux (int, float, etc.), ils ne sont pas forcément initialisés automa-
tiquement.

#include <iostream>

struct vec3 {
float x, y, z;
1

int main() {
vec3 v; // x,y,z indéfinis !
std::cout << v.x << std::endl; // comportement indéterminé

Dans le cas d’une struct agrégée, on peut forcer une initialisation a zéro avec {} :

vec3 v{}; // x=y=z=0

Mais dés qu’on veut controler précisément I’état de 1’objet, on utilise des constructeurs.

Constructeur par défaut

Le constructeur par défaut ne prend aucun argument. II sert souvent a mettre des valeurs cohérentes.

struct vec3 {
float x, y, z;

vec3() : x(0.0f), y(0.0f), z(0.0f) {}
18

int main() {
vec3 v; // appelle vec3()
+

Ici, v est garanti valide : ses champs valent 0.

63

Liste d’initialisation

L’écriture : x(...), y(...), z(...) estlaliste d’initialisation. Elle initialise les attributs avant d’entrer dans le corps
du constructeur.

struct vec3 {
float x, y, z;

vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}
+

Utilisation :

vec3 v(1.0f, 2.0f, 3.0f)
vec3 w{l.of, 2.0f, 3.0f}; // uniforme (souvent recommandé)

Cette liste est préférable a une affectation dans le corps du constructeur, car elle évite une “double étape”
(construction puis réaffectation) et elle est requise pour certains membres.

Constructeurs surchargés

On peut définir plusieurs constructeurs pour offrir différentes maniéres de créer un objet.

struct vec3 {
float x, y, z;

vec3() : x(0), y(0), z(0) {}
vec3(float v) : x(v), y(v), z(v) {}
vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

+

int main() {
vec3 a; // (0,0,0)
vec3 b(1.0f); // (1,1,1)

vec3 c(1.0f,2.0f,3.0f); // (1,2,3)

Constructeur a un argument et explicit

Un constructeur a un seul argument peut servir de conversion implicite, ce qui peut provoquer des effets de bord.
Le mot-clé explicit empéche ces conversions automatiques.

struct vec3 {
float x, y, z;

explicit vec3(float v) : x(v), y(v), z(v) {}
+

vec3 a(1l.0f); // 0K
// vec3 b = 1.0f; // interdit grdce a explicit

Cela rend le code plus sir et plus lisible.

Membres const et références : constructeur obligatoire

Les attributs const et les références doivent étre initialisés via la liste d’initialisation.

struct sample {
int const id;
float& ref;

sample(int id_, float& ref_) : id(id_), ref(ref_) {}
+

64

Sans liste d’initialisation, ce code ne compile pas, car id et ref ne peuvent pas étre “assignés” apreés coup : ils
doivent étre initialisés immédiatement.

Destructeur (rappel)

Le destructeur est appelé automatiquement quand 1’objet est détruit (fin de scope, delete, etc.). Il sert surtout a
libérer des ressources (fichier, mémoire, GPU...).

#include <iostream>

struct tracer {
tracer() { std::cout << "Constructed\n"; }
~tracer() { std::cout << "Destroyed\n"; }

18

int main() {
tracer t; // "Constructed"
} // "Destroyed"

Bonnes pratiques

« Initialiser systématiquement les attributs (via constructeur ou {}).

* Préférer la liste d’initialisation : pour initialiser les membres.

+ Utiliser explicit pour les constructeurs a un argument, sauf si la conversion implicite est désirée.
» Concevoir les constructeurs pour garantir des objets toujours valides.

4.3 Opérateurs

En C++, il est possible de surcharger des opérateurs pour des classes et des structures afin de rendre leur utilisation
plus naturelle et expressive. Cette fonctionnalité est particulierement utile en informatique graphique, ou 1’on
manipule fréquemment des vecteurs, matrices, couleurs ou transformations, et ou des expressions comme vi + v2
ou 2.of * v sont bien plus lisibles qu’un appel de fonction explicite.

Principe général

La surcharge d’opérateurs consiste a définir une fonction spéciale dont le nom est operator<symbole>. Du point de
vue du compilateur, une expression comme :

a+b

est traduite en :

operator+(a, b);

ou, dans le cas d’un opérateur membre :

a.operator+(b);

La surcharge ne crée pas de nouvel opérateur : elle redéfinit simplement le comportement d’un opérateur
existant pour un type donné.

Opérateurs membres et non-membres
Un opérateur peut étre défini :

« comme méthode membre de la classe,
* ou comme fonction non-membre (souvent préférable pour les opérateurs symétriques).

Regle courante :

* les opérateurs qui modifient I’objet (+=, x=, (1, etc.) sont souvent des méthodes membres ;
* les opérateurs binaires symétriques (+, -, *) sont souvent des fonctions non-membres.

65

Exemple : opérateurs arithmétiques pour un vecteur 3D

struct vec3 {
float x, y, z;

vec3() : x(0), y(o), z(0) {}
vec3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}

vec3& operator+=(vec3 const& v) {
X += V.X;
y += v.y;
zZ += V.Z;
return xthis;

18

L’opérateur += modifie I’objet courant et retourne une référence sur celui-ci.
On définit ensuite + comme opérateur non-membre en réutilisant += :

vec3 operator+(vec3 a, vec3 const& b) {
a += b;
return a;

Utilisation :

vec3 a{1,2,3};
vec3 b{4,5,6};

vec3 c=a+b; // (57,9)
a += b; // a devient (5,7,9)

Opérateurs avec types différents

On peut définir des opérateurs entre types différents, par exemple la multiplication par un scalaire :

vec3 operatork(float s, vec3 const& v) {
return vec3{skxv.Xx, Sxv.y, S*v.z};

}

vec3 operatork(vec3 const& v, float s) {
return s * v;

}

Cela permet une écriture naturelle :

vec3 v{1,2,3};
vec3 w = 2.0f x v;

Opérateurs de comparaison

Les opérateurs de comparaison permettent de comparer des objets :

-~

bool operator==(vec3 const& a, vec3 const& b
return a.x == b.x & a.y == b.y && a.z == b.z;
+

-~

bool operator!=(vec3 const& a, vec3 const& b
return !(a == b);

b

Depuis C++20, il existe également 1’ opérateur <=> (three-way comparison), mais son utilisation dépasse le cadre
de cette introduction.

66

Opérateur d’acces []

L’opérateur [] est souvent utilisé pour donner un accés indexé aux données internes :

struct vec3 {
float x, y, z;

float& operator[](int i) {
return (&x)[il; // accés contigu

b

float const& operator[](int i) const {
return (&x)I[i];
}
i

Utilisation :

vec3 v{1,2,3};
v[o] = 4.0f;
float y = v[1];

La version const est indispensable pour permettre 1’accés en lecture sur un objet constant.

Opérateur d’affichage <<

Pour faciliter le débogage, on surcharge souvent I’opérateur << avec std::ostream :

#include <iostream>

std::ostream& operator<<(std::ostream& out, vec3 const& v) {
out << "(" << v.x << ", " << V.zZ << ")";
return out;

<< V.Y <<

Utilisation :

vec3 v{1,2,3};
std::cout << v << std::endl;

Bonnes pratiques

+ Toujours utiliser des références constantes pour les paramétres en lecture.

» Retourner xthis par référence pour les opérateurs de modification (+=, *=, etc.).

« Eviter les surcharges qui rendent le code ambigu ou contre-intuitif.

* Ne pas surcharger un opérateur si son sens mathématique ou logique n’est pas clair.

La surcharge d’opérateurs permet d’écrire du code plus lisible et plus expressif, mais elle doit rester simple,
cohérente et prévisible.

4.4 Héritage

L’héritage est un mécanisme central de la programmation orientée objet qui permet de définir une nouvelle classe
a partir d’une classe existante. La classe dérivée hérite des attributs et des méthodes de la classe de base, ce
qui favorise la réutilisation du code et la structuration hiérarchique des concepts. En C++, I’héritage est souvent
utilisé pour factoriser des comportements communs tout en permettant des spécialisations.

Principe général

On définit une classe dérivée en indiquant la classe de base apres : :

class Derived : public Base {
// contenu spécifique a Derived

67

Le mot-clé public indique que I’interface publique de la classe de base reste publique dans la classe dérivée.
C’est le cas le plus courant et celui utilisé dans la majorité des conceptions orientées objet.

Exemple simple d’héritage

Considérons une classe de base représentant une forme géométrique :

class Shape {
public:
float x, y;

Shape(float x_, float y_) : x(x_), y(y_) {}
void translate(float dx, float dy) {

X += dx;
y += dy;

On peut définir une classe dérivée qui spécialise ce comportement :

class Circle : public Shape {
public:
float radius;

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}
18

Utilisation :

Circle c(0.0f, 0.0f, 1.0f);
c.translate(1.0f, 2.0f); // méthode héritée de Shape

La classe circle hérite automatiquement de x, y et de la méthode transtate.

Constructeurs et héritage

Le constructeur de la classe dérivée doit appeler explicitement le constructeur de la classe de base dans sa liste
d’initialisation.

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}

Si le constructeur de la classe de base n’est pas appelé explicitement, le compilateur tentera d’appeler le con-
structeur par défaut, ce qui peut entrainer une erreur s’il n’existe pas.
Accés aux membres : public, protected, private
Le niveau d’accés des membres de la classe de base détermine leur visibilité dans la classe dérivée :

* public : accessible partout, y compris dans les classes dérivées.
* protected : accessible uniquement dans la classe et ses dérivées.
* private : accessible uniquement dans la classe de base.

Exemple :

class Shape {
protected:
float x, y;

public:
Shape(float x_, float y_) : x(x_), y(y_) {}
b

68

class Circle : public Shape {
public:
float radius;

Circle(float x_, float y_, float r_)
: Shape(x_, y_), radius(r_) {}

float center_x() const {
return x; // autorisé car x est protected
}
b

Redéfinition de méthodes

Une classe dérivée peut redéfinir une méthode de la classe de base afin de fournir un comportement spécifique.

class Shape {
public:
float x, y;

Shape(float x_, float y_) : x(x_), y(y_) {}

float area() const {
return 0.0f;
+
+

class Rectangle : public Shape {
public:
float w, h;

Rectangle(float x_, float y_, float w_, float h_)
: Shape(x_, y_), w(w_), h(h_) {}

float area() const {
return w x h;
}
18

Ici, Rectangle::area masque la version définie dans shape. Ce mécanisme prépare naturellement 1’introduction
du polymorphisme, qui sera étudié dans le chapitre suivant.

Héritage et factorisation du code

L’héritage permet d’éviter les duplications :

class Vehicle {
public:
float speed;

void accelerate(float dv) {
speed += dv;
+
18

class Car : public Vehicle {
// comportement spécifique

18

class Plane : public Vehicle {
// comportement spécifique

18

Les classes car et Plane partagent le méme comportement de base sans duplication.

69

Bonnes pratiques

« Utiliser I’héritage pour exprimer une relation est-un (is-a).
* Préférer des classes de base simples et stables.

4.5 Polymorphisme

Le polymorphisme permet de manipuler des objets de types différents a travers une interface commune, tout en
appelant automatiquement la bonne implémentation selon le type réel de I’objet. En C++, il repose sur I’héritage,
les fonctions virtuelles et 1’utilisation de pointeurs ou références vers une classe de base. Il est particuliére-
ment utile lorsqu’on souhaite stocker des objets hétérogénes dans un méme conteneur et les traiter de maniére
uniforme.

Le probléme : stocker des objets différents dans un méme conteneur

Supposons que 1’on souhaite représenter différentes formes géométriques et calculer leur aire totale.

struct Circle {
float r;
float area() const {
return 3.14159f *x r % r;
}
i

struct Rectangle {
float w, h;
float area() const {
return w x h;
}
i

Ces deux types possedent une méthode area(), mais ils n’ont aucun lien de type. Il est donc impossible d’écrire

std::vector<Circle> shapes; // uniquement des cercles
std::vector<Rectangle> shapes; // uniquement des rectangles

et surtout impossible de faire :

std::vector</* Circle et Rectangle x/> shapes; // impossible

Sans polymorphisme, on est contraint soit :

* de dupliquer le code,
« d’utiliser des tests sur le type,
+ ou de concevoir une structure artificielle regroupant tous les cas possibles.

Le polymorphisme fournit une solution élégante a ce probléme.

Interface commune via une classe de base

On commence par définir une classe de base représentant le concept général de “forme” :

class Shape {
public:
virtual float area() const = @; // méthode virtuelle pure
virtual ~Shape() = default;
i

Cette classe est abstraite :

« elle définit une interface,
« elle ne peut pas étre instanciée.

70

Classes dérivées spécialisées

Chaque forme concréte hérite de shape et implémente area() :

// Remarque : le mot-clé ‘override’ (C++11) indique au compilateur
// que la méthode redéfinit une méthode virtuelle de la classe de base.
// Il provoquera une erreur de compilation si la signature ne correspond pas.
class Circle : public Shape {
public:
float r;

explicit Circle(float r_) : r(r_) {}

float area() const override {
return 3.14159f x r x r;
}
1

class Rectangle : public Shape {
public:
float w, h;

Rectangle(float w_, float h_) : w(w_), h(h_) {}

float area() const override {
return w x h;
}
+

Stockage polymorphique dans un conteneur

Grace a I’héritage et aux fonctions virtuelles, on peut maintenant stocker des pointeurs vers la classe de base dans
un méme conteneur :

#include <vector>
#include <memory>

int main() {
std::vector<std::unique_ptr<Shape>> shapes;

shapes.push_back(std: :make_unique<Circle>(2.0f));
shapes.push_back(std: :make_unique<Rectangle>(3.0f, 4.0f));

float total_area = 0.0f;
for (auto const& s : shapes) {
total_area += s->area(); // appel polymorphique

Ici :

* le conteneur ne connait que le type shape,
* chaque élément pointe vers un objet d’un type concret différent,
* ’appel a area() est résolu dynamiquement selon le type réel (Circle ou Rectangle).

Role de virtual et du dispatch dynamique
L’appel :

s—>area();

est résolu a I’exécution grace a la table virtuelle :

* si s pointe vers un Circle, Circle::area() est appelée,
* si s pointe vers un Rectangle, Rectangle::area() est appelée.

C’est le coeur du polymorphisme dynamique.

71

Importance du destructeur virtuel

Les objets sont détruits via un pointeur vers la classe de base. Le destructeur doit donc étre virtuel :

class Shape {
public:
virtual ~Shape() = default;
i

Sans cela, le destructeur de la classe dérivée ne serait pas appelé, ce qui pourrait provoquer des fuites de
ressources.

Pourquoi des pointeurs et pas des objets ?

On ne peut pas stocker directement des objets dérivés dans un conteneur de type std: : vector<Shape> car cela entrain-
erait un slicing (perte de la partie dérivée). Les pointeurs (souvent intelligents) évitent ce probléme et permettent
la liaison dynamique.

Coliit et alternatives
Le polymorphisme dynamique implique :

* une indirection,
* un colt d’appel légeérement supérieur a une fonction non virtuelle.

Dans des boucles trés critiques en performance, on privilégiera parfois le polymorphisme statique via les
templates, abord¢ ultérieurement.

Utilisation de pointeurs bruts (raw pointers)

Dans les exemples précédents, nous avons utilisé des pointeurs intelligents (std::unique_ptr) pour gérer automa-
tiquement la durée de vie des objets. Il est toutefois important de comprendre que le polymorphisme en C++
fonctionne historiquement avec des pointeurs bruts (shapex). Ceux-ci offrent plus de liberté, mais exigent une
gestion manuelle de la mémoire, ce qui augmente fortement le risque d’erreurs.

Exemple avec pointeurs bruts

#include <vector>

int main() {
std::vector<Shapex> shapes;

shapes.push_back(new Circle(2.0f));
shapes.push_back(new Rectangle(3.0f, 4.0f));

float total_area = 0.0f;
for (Shapex s : shapes) {

total_area += s—->area(); // appel polymorphique
}

// Libération manuelle de la mémoire
for (Shapex s : shapes) {
delete s;

b

Ici:

* les objets sont alloués dynamiquement avec new,

* le conteneur stocke des pointeurs vers la classe de base Shape,

* les appels a area() sont résolus dynamiquement,

* le programmeur doit impérativement libérer la mémoire avec delete.

72

Réle critique du destructeur virtuel

Avec des pointeurs bruts, le destructeur virtuel est absolument indispensable :

class Shape {

public:
virtual ~Shape() = default;
+
Sans destructeur virtuel, I’appel :
delete s;

ne détruirait que la partie shape de 1’objet, et non la partie dérivée (Circle, Rectangle), entrainant des fuites de
ressources et un comportement indéfini.

Problémes fréquents avec les pointeurs bruts
L’utilisation de pointeurs bruts expose a plusieurs erreurs classiques :

e oubli de detlete — fuite mémoire ;

* double delete — comportement indéfini ;

* suppression dans le mauvais ordre ;

* exception ou retour anticipé empéchant la libération ;
+ confusion sur la responsabilité de destruction.

Ces problémes sont difficiles a détecter et a corriger, en particulier dans des projets de grande taille.

Bonnes pratiques

« Utiliser le polymorphisme pour résoudre des problémes de traitement uniforme d’objets hétérogénes.
 Définir des classes de base abstraites comme interfaces.

+ Toujours déclarer un destructeur virtuel dans une hiérarchie polymorphique.

« Utiliser override pour sécuriser les redéfinitions.

* Combiner polymorphisme et pointeurs intelligents (std::unique_ptr).

Le polymorphisme permet ainsi de concevoir des systémes extensibles ou de nouveaux types peuvent étre
ajoutés sans modifier le code existant, en particulier lorsqu’il s’agit de manipuler des collections d’objets variés.

4.6 Gestion d’acceés : const

En C++, le mot-clé const appliqué aux méthodes de classe joue un réle central dans la gestion des acces et dans la
sécurité du code. Il ne s’agit pas d’un simple indicateur documentaire : une méthode const et une méthode non const
sont considérées par le compilateur comme deux méthodes différentes, pouvant parfaitement cohabiter dans une
méme classe avec le méme nom.

Sens d’une méthode const

Une méthode déclarée avec const apres sa signature garantit qu’elle ne modifie pas I’état de 1’objet.

class vec3 {
public:
float x, y, z;

float norm() const {
return std::sqrt(xkx + yxy + zxz);
}
18

Le const signifie ici que la méthode ne peut pas modifier x, y ou z. Toute tentative de modification provoquerait
une erreur de compilation.

73

float norm() const {
X = 0.0f; // ERREUR : modification interdite
return 0.0f;

Objets constants et méthodes accessibles

Un objet déclaré const ne peut appeler que des méthodes const.

const vec3 v{l.0f, 2.0f, 3.0f};

v.norm(); // 0K
// v.normalize(); // ERREUR si normalize() n'est pas const

Cela impose naturellement une séparation claire entre :

* les méthodes de lecture (acceés, calculs),
* les méthodes de modification (mise a jour de 1’état).

Méthodes const et non const : deux signatures différentes

Une méthode const et une méthode non const portant le méme nom ne sont pas la méme fonction. Elles peuvent
étre définies simultanément dans une classe.

class vec3 {
public:
float x, y, z;

float& operator[](int i) {
return (&x)[i];

b

float const& operator[](int i) const {
return (&x)I[i];
}
i

Ici :

* la version non const est appelée sur un objet modifiable,
* la version const est appelée sur un objet constant.

Utilisation :

vec3 a{1,2,3};
al@] = 5.0f; // appelle la version non const

const vec3 b{1,2,3};
float x = bl[@]; // appelle la version const

Le compilateur choisit automatiquement la version appropriée en fonction du caractére const de I’objet.

Exemple classique : accesseur en lecture et écriture

class Buffer {
public:
float& value() {
return data;

b

float value() const {
return data;

b

74

private:

float data;
i
Ici:
* value() (non const) permet de modifier la donnée,
* value() const permet seulement de la lire.
Buffer b;
b.value() = 3.0f; // version non const

const Buffer c;
// c.value() = 3.0f; // ERREUR
float v = c.value(); // version const

Intérét conceptuel

Cette distinction permet :

+ d’exprimer clairement les intentions du code,

* de garantir que certaines opérations sont sans effet de bord,
* de détecter des erreurs dés la compilation,

« d’écrire des interfaces plus robustes.

Dans une conception bien structurée, la majorité des méthodes devraient étre const. Les méthodes non const
correspondent a des opérations de modification explicites.

Bonnes pratiques

* Marquer toute méthode qui ne modifie pas 1’objet comme const.

* Fournir systématiquement une version const et non const lorsque I’accés peut étre en lecture ou en écriture.
* Considérer une méthode const et une méthode non const comme deux contrats distincts.

« Utiliser const comme un outil de conception, pas seulement comme une contrainte syntaxique.

4.7 Mot clé : static

4.8 Gestion d’acces : le mot-clé static dans les classes

Le mot-clé static, appliqué aux membres d’une classe, modifie profondément leur nature et leur durée de vie.
Un membre static n’appartient pas a un objet, mais a la classe elle-méme. Il est donc partagé par toutes les
instances de cette classe. Ce mécanisme est essentiel pour représenter des données ou des comportements globaux
liés a un concept, plutdt qu’a un objet particulier.

Attributs statiques

Un attribut statique est unique pour toute la classe, quel que soit le nombre d’objets créés.

class Counter {

public:
Counter() {
++count;
+

static int get_count() {
return count;

b

private:
static int count;

18

75

La déclaration dans la classe ne suffit pas. L’attribut statique doit étre défini une seule fois dans un fichier
.cpp -

int Counter::count = 0;

Utilisation :

Counter a;
Counter b;
Counter c;

int n = Counter::get_count(); // n =3

Tous les objets counter partagent la méme variable count.

Acces aux attributs statiques

Un attribut statique :

* peut étre accédé sans objet, via le nom de la classe,
* peut aussi étre accédé depuis un objet, mais ce n’est pas recommandé.

Counter::get_count(); // forme recommandée

Cela souligne le fait que la donnée appartient a la classe, et non a une instance particulicre.

Méthodes statiques

Une méthode statique est une fonction associée a la classe, mais indépendante de toute instance.

class MathUtils {
public:
static float square(float x) {
return x *x X;
}
+

Utilisation :

float y = MathUtils::square(3.0f);

Contraintes des méthodes statiques

Une méthode statique :

* n’a pas de pointeur this,
* ne peut accéder qu’aux membres statiques de la classe,
* ne peut pas accéder directement aux attributs non statiques.

class Example {
public:
static void f() {
// x =3; // ERREUR : x n'est pas statique
y = 4; // 0K
}

private:
int x;
static int y;
i

76

static et initialisation

Depuis C++17, il est possible d’initialiser directement certains attributs statiques dans la classe s’ils sont constexpr
ou de type littéral.

class Physics {
public:
static constexpr float gravity = 9.81f;
i

Utilisation :

float g = Physics::gravity;

Dans ce cas, aucune définition supplémentaire dans un .cpp n’est nécessaire.

Cas d’usage courants

Le mot-clé static est utilisé pour :

» compter le nombre d’instances d’une classe,

« stocker des constantes globales liées a un concept,

* partager des ressources communes,

* regrouper des fonctions utilitaires liées a une classe,
+ implémenter des fabriques (factory methods).

Exemple : identifiant unique par objet

class Object {
public:
Object() : id(next_id++) {}

int get_id() const {
return id;

}
private:
int id;
static int next_id;

1

int Object::next_id = 0;

Chaque objet recoit un identifiant unique, généré a partir d’un compteur partageé.

Bonnes pratiques

« Utiliser static pour exprimer une appartenance a la classe, pas a ’objet.

* Accéder aux membres statiques via NomClasse: :membre.

+ Limiter I'usage des attributs statiques modifiables pour éviter les dépendances cachées.
* Préférer constexpr static pour les constantes connues a la compilation.

Idée clé a retenir

Un membre static est unique et partagé, il appartient a la classe, pas aux objets.

4.9 Espaces de noms (namespace)

Quand un projet grandit, il devient fréquent d’avoir des noms identiques dans des parties différentes du code :
vec3, add, normalize, load, etc. En C++, un espace de noms (namespace) permet de regrouper des fonctions, types
et constantes sous un préfixe commun, afin de :

« éviter les conflits de noms entre modules/bibliothéques,

71

* structurer le code par domaines (math, io, gpu, ...),
+ rendre I’ API plus claire et plus prédictible.

L’exemple le plus connu est la bibliothéque standard : std::vector, std::string, std:: cout.

Déclaration et utilisation

Un namespace crée une “boite” logique :

namespace math {

struct vec3 {
float x, y, z;

i
float dot(vec3 const& a, vec3 const& b)
{

return a.xxb.x + a.yxb.y + a.zxb.z;
+

} // namespace math

Utilisation :

math::vec3 a{1,2,3};
math::vec3 b{4,5,6};

float p = math::dot(a, b);

Ici, math:: est le qualificateur : il désambiguise les symboles.

Exemple : éviter un conflit de noms

Deux bibliothéques peuvent proposer une fonction load() mais pour des usages différents. Sans namespace, cela
devient ambigu.

namespace io {
int load(char constx filename) { /* ... */ return 0; }

}

namespace gpu {
int load(char constx shader_file) { /* ... */ return 1; }

b

Usage explicite et non ambigu :

int a = io::load("mesh.obj");
int b = gpu::load("shader.vert");

using : importer des noms (avec prudence)

Il existe deux syntaxes :

1) Importer un nom précis (recommandé)

using math::vec3;

vec3 v{1,2,3}; // équivalent a math::vec3

2) Importer tout un namespace (a éviter dans un header)

78

using namespace std;

Cela permet d’écrire vector au lieu de std: :vector, mais peut créer des conflits.
Bonne pratique :

* using namespace ...; est acceptable dans un petit . cpp local,
+ a éviter dans un .hpp, car il pollue tous les fichiers qui incluent cet en-téte.

Espaces de noms imbriqués

On peut structurer par modules :

namespace engine {
namespace math {
struct vec2 { float x, y; };
+
namespace io {
void save();
+
+

Depuis C++17, on peut écrire plus simplement :

namespace engine::math {
struct vec2 { float x, y; };
+

Espaces de noms anonymes (visibilité locale)

Un namespace anonyme rend les symboles visibles uniquement dans le fichier courant (équivalent a static pour
des fonctions globales, mais plus général).

namespace {
int helper(int x) { return 2xx; }

+
int f(int a)
{
return helper(a);
+

Intérét :

« ¢éviter d’exposer des fonctions internes au reste du projet,
* limiter la surface de I’API publique.

Alias de namespace

Utile si un nom est long :

namespace em = engine::math;

em::vec2 v{1,2};

Bonnes pratiques

« Utiliser des namespaces pour structurer un projet (€X. engine: :math, engine: : io, engine: : render).
» Garder les using namespace ...; hors des headers.

* Préférer using nom::symbole; plutdt qu’importer tout le namespace.

+ Utiliser un namespace anonyme pour les détails d’implémentation dans un . cpp.

+ Concevoir une API publique stable via un namespace clair (ex. myproject::).

79

Si tu veux, je peux aussi te proposer une mini-convention d’organisation “type projet” (ex. namespace cgp /
namespace csc43043, structure fichiers, exposer uniquement include/ vs src/) pour rendre I’ensemble homogene avec
les chapitres sur I’organisation des fichiers.

80

S Threads et parallélisme

Le parallélisme désigne la capacité d’un programme a exécuter plusieurs tiches simultanément. En C++, cette
notion est directement liée aux threads, qui permettent d’exploiter les cceurs multiples des processeurs modernes.
Comprendre les threads est essentiel pour écrire des programmes performants, mais aussi slirs et corrects.

5.1 Notion de thread

Un thread est un fil d’exécution indépendant a I’intérieur d’un méme programme.

* Un programme classique posséde un seul thread (exécution séquentielle).
* Un programme multithread posséde plusieurs threads, exécutés en paralléle ou quasi-paralléle.

Tous les threads d’un méme programme :

* partagent le méme espace mémoire (heap, variables globales),
* possedent chacun leur pile d’exécution (variables locales, appels de fonctions).

(Petit rappel : en C++ on manipule souvent les threads via la classe std::thread fournie dans <thread>.)

5.2 Création d’un thread en C++

Depuis C++11, la bibliotheque standard fournit std: : thread.

(std::thread : classe qui représente un fil d’exécution et permet de lancer une fonction dans un thread séparé ;
définie dans <thread>.)

Exemple simple :

#include <iostream>
#include <thread>

void task() {
std::cout << "Hello depuis un thread" << std::endl;

}

int main() {
std::thread t(task); // création du thread
t.join(); // attendre la fin du thread
return 0;

Points importants :

* le thread démarre immédiatement a sa création,

* join() bloque le thread principal jusqu’a la fin du thread t,

* detach() dissocie le thread du thread appelant : il devient indépendant et n’est plus joignable,

* ne pas appeler join() ou detach() avant la destruction d’un objet std::thread provoque std::terminate() a
I’exécution.

Dans cet exemple :

* task() s’exécute dans un thread séparé,
* le thread principal attend la fin de t grace a join().

5.3 Exemple d’exécution parallele

Considérons maintenant deux threads exécutant une tache visible dans le temps.

81

#include <iostream>
#include <thread>
#include <chrono>

void task(int id) {
for(int i = 0; i < 5; ++i) {
std::cout << "Thread " << id << " : étape " << i << std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(100));

int main() {
std::thread tl(task, 1);
std::thread t2(task, 2);

tl.join();
t2.join();
return 0;
+
(Remarque : std::chrono (dans <chrono>) fournit des types pour durées et horloges, p.ex. milliseconds.)
Sortie typique (I’ordre exact peut varier) :
Thread 1 : étape 0
Thread 2 : étape 0
Thread 1 : étape 1
Thread 2 : étape 1
Thread 2 : étape 2
Thread 1 : étape 2
Thread 1 : étape 3
Thread 2 : étape 3
Thread 2 : étape 4
Thread 1 : étape 4

Ce que I’on observe :

* les deux threads progressent en méme temps,
* leurs affichages sont entrelacés,
* ’ordre n’est pas déterministe.

5.4 Passage d’arguments aux threads

Les arguments sont copiés par défaut.

void print(int x) {
std::cout << x << std::endl;

¥

std::thread t(print, 42);
t.join();

En suivant le format générique de passage d’arguments.

std::thread t(fonction, argl, arg2, arg3, ...);

Pour passer une référence :

#include <functional>
void increment(int& x) {

X++;

int main() {
int a = 5;
std::thread t(increment, std::ref(a));

82

t.join();

5.5 Threads multiples et parallélisme réel

Exemple avec plusieurs threads :

#include <thread>
#include <vector>

void work(int id) {
// calcul indépendant

}

int main() {
std::vector<std::thread> threads;

for(int i = 0; i < 4; ++i)
threads.emplace_back(work, 1i);

for(auto& t : threads)
t.join();

Chaque thread peut étre exécuté sur un cceur différent.

5.6 Mémoire partagée
Les threads partagent la mémoire, ce qui introduit des risques majeurs :

* conditions de course (race conditions),
* incohérences de données,
* comportements non déterministes.

Exemple dangereux :

int counter = 0;

void increment() {
counter++; // non atomique

}

Si plusieurs threads exécutent increment(), le résultat est imprévisible.

5.7 Synchronisation et sections critiques

Une section critique est une zone de code qui ne doit étre exécutée que par un seul thread a la fois.
En C++, on utilise std: :mutex.
(std: :mutex : mutex (verrou) défini dans <mutex> utilisé pour protéger une section critique.)

#include <mutex>

int counter = 0;
std::mutex m;

void increment() {
std::lock_guard<std::mutex> lock(m);
counter++;

* le mutex empéche I’accés concurrent,
* lock_guard garantit le déverrouillage automatique.

&3

5.8 Variables atomiques

Pour des opérations simples, on peut utiliser std: :atomic.

#include <atomic>
std::atomic<int> counter(0);
void increment() {

counter++;

b

Avantages :

* plus rapide qu’un mutex,
* siir pour des opérations élémentaires.

Limite :

* inadapté aux structures complexes.

Coiit et limites du multithreading

Créer des threads a un coft :
 création,
* synchronisation,
 contention sur la mémoire.

Trop de threads peut :

+ dégrader les performances,
+ augmenter la latence,
» compliquer le raisonnement.

Bonne pratique :

« utiliser un nombre de threads proche du nombre de cceurs,
* privilégier les taches grossieres plutot que tres fines.

84

6 Programmation générique, template

La programmation générique permet d’écrire du code indépendant des types, tout en conservant les perfor-
mances du C++ compilé. En C++, ce paradigme repose principalement sur les templates, qui permettent de
définir des fonctions et des classes paramétrées par des types (ou des valeurs). Les templates sont omniprésents
dans la bibliotheéque standard (STL) et constituent un outil fondamental pour écrire du code réutilisable, expressif
et efficace.

6.1 Principe général des templates

Un template est un modele de code qui n’est pas directement compilé. Le compilateur génére automatiquement
une version spécialisée du code pour chaque type utilisé.

template <typename T>
T add(T a, T b) {
return a + b;

}

Le mot-clé typename (ou alternativement class dans ce contexte) introduit un parameétre de type dans la décla-
ration template <typename T>.
Utilisation :

int a = add(2, 3); // T = int
float b = add(1.5f, 2.5f); // T = float

Pour chaque type (int, float), le compilateur génére une fonction différente, avec les mémes performances
qu’un code écrit a la main.

Templates de fonctions

Les templates de fonctions permettent d’écrire des algorithmes génériques sans dupliquer le code.

template <typename T>
T maximum(T a, T b) {
return (a > b) ? a : b;

+

Cette fonction fonctionne pour tout type supportant 1’opérateur > :
maximum(3, 5); // int
maximum(2.0f, 1.5f); // float

Si le type ne supporte pas I’opérateur requis, 1’erreur est détectée a la compilation.

Templates de classes

Les templates peuvent aussi étre utilisés pour définir des classes génériques.

template <typename T>
struct Box {
T value;

explicit Box(T v) : value(v) {}
i

Utilisation :

Box<int> a(3);
Box<float> b(2.5f);

Ici, Box<int> et Box<float> sont deux types distincts générés par le compilateur.

85

Exemples pour des vecteurs

En informatique graphique, les templates sont trés utilisés pour :

* vecteurs et matrices de dimensions ou types variés,
+ buffers CPU/GPU typés,
* algorithmes indépendants de la précision (float, double).

Exemple de vecteur générique :

template <typename T>
struct vec3 {
Tx,y, z;

vec3(T x_, Ty, Tz) : x(x), yly_), z(z_) {}

T norm2() const {
return xxx + ykxy + z%z;
}
i

Utilisation :

vec3<float> vf(1l.0f, 2.0f, 3.0f);
vec3<double> vd(1.0, 2.0, 3.0);

Parameétres templates non typés

Un template peut aussi prendre des parameétres non typés, connus a la compilation.

template <typename T, int N>
struct Array {
T datalN];

T& operator[](int i) { return datalil; }
T const& operator[](int i) const { return data[il; }
+

Utilisation :

Array<float, 3> v; // taille connue a la compilation

Ce principe est utilisé dans std::array<T, N>.

Spécialisation de templates

11 est possible de fournir une implémentation spécifique pour un type donné.

template <typename T>
struct Printer {
static void print(T const& v) {
std::cout << v << std::endl;
}
+

// spécialisation pour bool
template <>
struct Printer<bool> {
static void print(bool v) {
std::cout << (v ? "true" : "false") << std::endl;
}
i

La spécialisation permet d’adapter le comportement sans modifier le code générique.

86

6.2 Principes de compilation: duck typing, instanciation et
fichiers d’en-téte

La compilation des templates en C++ obéit a des régles spécifiques, différentes de celles du code classique. Com-
prendre ces principes est essentiel pour interpréter les messages d’erreur du compilateur et organiser correctement
son code.

Duck typing statique

Les templates reposent sur un principe appelé duck typing statique.
Le principe est le suivant :

Un type est valide s’il fournit toutes les opérations utilisées dans le template.

Par exemple :

template <typename T>
T square(T x) {
return x x Xx;

}

Ce template n’impose aucune contrainte explicite sur 7. Cependant, lors de ’instanciation, le compilateur
exige que le type utilisé posséde 1’opérateur x.

square(3); // OK : int supporte %
square(2.5f); // OK : float supporte *

En revanche :

struct A {};

square(A{}); // ERREUR de compilation

L’erreur apparait au moment ou le template est instancié, et non lors de sa définition. C’est une caractéristique
clé des templates :

* le code générique peut étre syntaxiquement correct,
+ mais invalide pour certains types concrets.

Ce mécanisme explique pourquoi les erreurs liées aux templates peuvent étre longues et complexes : le com-
pilateur tente d’instancier le code avec un type donné et échoue lorsqu’une opération requise n’existe pas.
Instanciation des templates

Un template n’est pas compilé tant qu’il n’est pas utilisé. La compilation réelle se fait lors de I’instanciation,
c’est-a-dire lorsque le compilateur rencontre une utilisation concréte :

add<int>(2, 3);
add<float>(1.5f, 2.5f);

Chaque instanciation génere :

* une fonction différente pour chaque type,
* ou un type différent pour chaque combinaison de paramétres template.

Ainsi :

Box<int>
Box<float>

sont deux types distincts, sans relation d’héritage entre eux.

87

https://en.wikipedia.org/wiki/Duck_typing

Conséquence importante : code visible a la compilation

Pour que le compilateur puisse instancier un template, il doit avoir accés a I’'implémentation compléte du template
au moment de la compilation.
Cela a une conséquence majeure sur 1’organisation des fichiers.

Templates et fichiers d’en-téte (. hpp)

Contrairement aux fonctions et classes classiques, le corps des templates doit étre visible partout ou ils sont
utilisés. C’est pourquoi :

* les templates sont définis dans les fichiers d’en-téte (.npp),
* ils ne sont généralement pas séparés en .hpp / . cpp.

Exemple correct :

// vec.hpp
#pragma once

template <typename T>
T add(T a, T b) {
return a + b;

b

// main.cpp
#include "vec.hpp"

int main() {
int a = add(2, 3);
+

Si le corps du template était placé dans un . cpp, le compilateur ne pourrait pas générer les versions spécialisées,
car I’implémentation ne serait pas visible au moment de I’instanciation.

Pourquoi les templates ne peuvent pas étre compilés séparément

Dans un code classique :

* le compilateur produit un fichier objet (.o0) a partir d’un . cpp,
* le linker assemble ensuite les symboles.

Avec les templates :

* le code généré dépend des types utilisés,
* ces types ne sont connus qu’au point d’utilisation.

Le compilateur ne peut donc pas produire a I’avance une version générique unique du template. Il doit voir a
la fois :

* la définition du template,
+ et le type concret utilisé.

Exceptions et cas particuliers

Il existe des techniques avancées (instanciation explicite) permettant de séparer partiellement I’implémentation,
mais elles restent complexes, en pratique, la régle simple est :

Tout template doit étre entiérement défini dans un fichier d’en-téte.

88

Résumé des principes clés

 Les templates utilisent un duck typing statique : les contraintes sur les types sont implicites.
* Les erreurs sont détectées a I’instanciation, pas a la définition.

» Chaque combinaison de paramétres template génére un code spécifique.

* Le compilateur doit voir 'implémentation compléte du template.

* Les templates sont donc définis dans des fichiers .hpp, pas .cpp.

Ces régles expliquent a la fois la puissance et la complexité des templates en C++.

6.3 Meta-programmation statique

La méta-programmation statique désigne I’ensemble des techniques permettant d’effectuer des calculs au mo-
ment de la compilation, avant méme I’exécution du programme. En C++, les templates et les expressions constexpr
permettent de déplacer une partie de la logique du programme vers le compilateur. Le résultat est un code plus
rapide a I’exécution, car certaines décisions et certains calculs sont déja résolus.
Principe général
L’idée centrale est la suivante :

utiliser le compilateur comme un moteur de calcul.

Les valeurs produites par la méta-programmation :

+ sont connues a la compilation,
* ne colitent aucun temps de calcul a I’exécution,
 peuvent étre utilisées comme parameétres templates, tailles de tableaux, ou constantes.

Méta-programmation avec parameétres templates entiers

Les parametres templates non typés (entiers) sont le premier outil de méta-programmation.

template <int N>
int static_square()

{
return N x N;

+
Utilisation :

int main()

{
const int a = static_square<5>(); // évalué & la compilation
float buffer[static_square<3>()]; // taille connue statiquement
std::cout << a << std::endl;
std::cout << sizeof(buffer) / sizeof(float) << std::endl;

}

Ici:

* static_square<5>() est calculé par le compilateur,

+ aucune multiplication n’est exécutée au run-time.
constexpr : calculs évalués par le compilateur

Depuis C++11, le mot-clé constexpr permet de demander explicitement une évaluation a la compilation, si les
arguments sont constants.

constexpr int square(int N)
{
return N *x N;

b

&9

Le compilateur :

« vérifie que I’expression peut étre évaluée statiquement,
+ génére une constante si c’est le cas.

Comparaison avec une fonction classique :

int runtime_square(int N)
{
return N x N;

}

Utilisation dans un paramétre template :

template <int N>
void print_value()

{
std::cout << N << std::endl;
+
int main()
{
print_value<square(5)>(); // 0K : expression constante
// print_value<runtime_square(5)>(); // ERREUR : non constante
Iy

Calculs récursifs a la compilation

Les templates et constexpr permettent d’écrire des calculs récursifs évalués a la compilation.
Exemple : calcul du factoriel.

constexpr int factorial(int N)
{

return (N <= 1) ? 1 : N x factorial(N - 1);
+

Utilisation comme paramétre template :

template <typename T, int N>
struct vecN

{
T datalN];
+
int main()
{
vecN<float, factorial(4)> v;
for (int k = 0; k < factorial(4); ++k)
v.datalk] = static_cast<float>(k);
H

Le calcul de 4! est effectu¢ entiérement a la compilation.

Méta-programmation par templates (forme historique)

Avant constexpr, la méta-programmation reposait exclusivement sur des templates récursifs.

template <int N>
struct Factorial {

static constexpr int value = N % Factorial<N - 1>::value;
18

template <>
struct Factorial<0> {
static constexpr int value = 1;

18

90

Utilisation :

int size = Factorial<5>::value; // évalué a la compilation

Cette technique est plus complexe et moins lisible, mais elle est importante historiquement et encore présente
dans certaines bibliothéques.

Cas d’usage typiques

La méta-programmation statique est utilisée pour :

« tailles de tableaux connues a la compilation,

« algorithmes spécialisés selon des paramétres constants,

* choix de code conditionnel (if constexpr en C++17),

+ optimisation agressive sans colt a I’exécution,

* structures mathématiques génériques (vecteurs, matrices).

Exemple avec if constexpr :

template <typename T>
void process(T v)

{
if constexpr (std::is_integral_v<T>)
std::cout << "Entier" << std::endl;
else
std::cout << "Non entier" << std::endl;
Iy

Note: “std::is_integral_v' est fourni par l'en-téte '<type_traits>".

La branche non pertinente est supprimée a la compilation.

Limites et précautions

+ Augmente le temps de compilation.
* Peut rendre les erreurs plus difficiles a comprendre.
* Le code peut devenir moins lisible si la méta-programmation est excessive.

6.4 Déduction de types dans les templates

L’un des objectifs majeurs de la programmation générique est de rendre le code a la fois générique et lisible. En
C++, le compilateur est capable de déduire automatiquement les paramétres template dans de nombreux cas, a
partir des arguments fournis lors de 1’appel. Comprendre quand cette déduction fonctionne — et quand elle échoue
— est essentiel pour écrire des interfaces génériques efficaces.

Principe général de la déduction

Lorsqu’un template est utilisé sans préciser explicitement ses parametres, le compilateur tente de les déduire a
partir des types des arguments.

template <typename T>
T add(T a, T b)

{
return a + b;
+
Utilisation :
int a = add(2, 3); // T déduit comme int

float b = add(1.2f, 3.4f); // T déduit comme float

Ici, le compilateur déduit T automatiquement a partir des arguments passés a la fonction.

91

Limites de la déduction automatique

La déduction de types fonctionne uniquement a partir des paramétres de la fonction. Elle ne fonctionne pas a
partir du type de retour.

template <typename T>
T identity();

Ce template ne peut pas étre appelé sans préciser T, car le compilateur n’a aucune information pour le déduire.

// identity(); // ERREUR
identity<int>(); // 0K

Exemple problématique : produit scalaire générique

Considérons une fonction générique de produit scalaire :

template <typename TYPE_INPUT, typename TYPE_OUTPUT, int SIZE>
TYPE_OUTPUT dot(TYPE_INPUT const& a, TYPE_INPUT const& b)

{
TYPE_OUTPUT val = 0;
for (int k = 0; k < SIZE; ++k)
val += alk] * b[kl;
return val;
+
Utilisation :

vecN<float,3> v0O, v1;

// Appel lourd et peu lisible
float p = dot<vecN<float,3>, float, 3>(v@, v1)

Dans ce cas :
* TYPE_INPUT, TYPE_OUTPUT et SIZE ne peuvent pas étre déduits automatiquement,

+ ’appel devient verbeux et difficile a lire.

Pourquoi la déduction échoue ici

La déduction échoue car :

* TYPE_OUTPUT n’apparait que dans le type de retour,
* SIZE n’apparait que comme parameétre template, pas dans les arguments de la fonction.

Le compilateur ne peut déduire un parameétre template que s’il est directement lié aux types des arguments.

Exposer les paramétres template dans les types

Une solution consiste a exposer explicitement les paramétres templates dans la classe générique.

template <typename TYPE, int SIZE>
class vecN

{
public:
using value_type = TYPE;
static constexpr int size() { return SIZE; }
TYPE& operator[] (int index);
TYPE const& operator[](int index) const;
private:
TYPE datal[SIZE];
18

On peut alors écrire une fonction bien plus lisible :

92

template <typename V>
typename V::value_type dot(V const& a, V const& b)

{
typename V::value_type val = 0;
for (int k = 0; k < V:i:size(); ++k)
val += alk] * b[k];
return val;
}
Utilisation :

float p = dot(ve, vl1); // types et taille déduits automatiquement

Ici:

v est déduit comme vecN<float, 3>,
* le type de retour est extrait via v::value_type,
* la taille est connue a la compilation via v::size().

Acces aux types internes : typename

Lorsqu’un type dépend d’un paramétre template, il doit étre précédé de typename pour indiquer au compilateur qu’il
s’agit bien d’un type.

typename V::value_type

Sans typename, le compilateur ne peut pas savoir si value_type est un type ou une valeur statique.

Déduction partielle et paramétres par défaut

Les templates peuvent aussi utiliser des paramétres par défaut pour réduire la verbosité :

template <typename T, int N = 3>
struct vecN;

Ce mécanisme permet de simplifier certaines utilisations, mais ne remplace pas une bonne conception des
interfaces.

Déduction avec auto et C++17+

Depuis C++17, auto peut étre utilisé pour déduire le type de retour d’une fonction template :

template <typename V>
auto norm2(V const& v)

{
auto val = typename V::value_type{};
for (int k = 0; k < V::size(); ++k)
val += vIk] * v[kl;
return val;
+

Cela améliore la lisibilité tout en conservant la généricité.

6.5 Spécialisation des templates

La spécialisation des templates permet d’adapter le comportement d’un template générique a un cas particulier,
sans modifier I’implémentation générale. Elle est utilisée lorsque, pour un type ou un paramétre précis, le com-
portement par défaut n’est pas adapté, inefficace ou incorrect.

La spécialisation est un mécanisme résolu a la compilation, et fait partie intégrante de la programmation
générique en C++.

93

Principe général

On commence par définir un template générique (cas général), puis on fournit une implémentation spécialisée
pour un type ou une valeur donnée.

template <typename T>
struct Printer

{
static void print(T const& v)
{
std::cout << v << std::endl;
}
+

Ce template fonctionne pour tout type compatible avec operator<<.

Spécialisation compléte d’un template

Une spécialisation compléte remplace entiérement I’implémentation du template pour un type précis.

template <>
struct Printer<bool>

{
static void print(bool v)
{
std::cout << (v ? "true" : "false") << std::endl;
}
i
Utilisation :
Printer<int>::print(5); // utilise la version générique

Printer<bool>::print(true); // utilise la spécialisation

Le compilateur choisit automatiquement la version la plus spécifique disponible.

Spécialisation de templates de fonctions

Les templates de fonctions peuvent également étre spécialisés, mais leur usage est plus délicat.

template <typename T>
void display(T v)
{
std::cout << v << std::endl;

}

template <>
void display<hool>(bool v)
{
std::cout << (v ? "true" : "false") << std::endl;

b

Ici aussi, la version spécialisée est utilisée lorsque T = bool.

Spécialisation partielle (templates de classes)

La spécialisation partielle permet de spécialiser un template pour une famille de types, mais elle n’est autorisée
que pour les templates de classes, pas pour les fonctions.
Exemple : spécialisation selon un paramétre entier.

template <typename T, int N>
struct Array
{
T datalN];
i

Spécialisation partielle pourn = o :

94

template <typename T>
struct Array<T, 0>
{

// tableau vide
+

Ici, tous les types Array<T,e> utilisent cette version spécifique.

Spécialisation partielle avec types pointeurs

Autre exemple classique :

template <typename T>
struct is_pointer
{
static constexpr bool value = false;
i

template <typename T>
struct is_pointer<Tx>

{

static constexpr bool value = true;
18

Utilisation :
is_pointer<int>::value; // false

is_pointer<intx>::value; // true

Ce type de spécialisation est largement utilisé¢ dans la STL (std::is_pointer, std::is_integral, etc.).

Spécialisation totale (ou compléte)

La spécialisation totale consiste a fournir une implémentation spécifique pour une combinaison entiérement
fixée des parameétres template (types et/ou valeurs). Pour cette combinaison précise, le template générique n’est
pas utilisé du tout : la spécialisation le remplace intégralement.

Dans le contexte des vecteurs génériques, cela permet par exemple :

+ d’optimiser un cas particulier (dimension courante),
+ de définir un comportement différent pour une taille donnée,
* ou d’adapter une représentation interne.

Exemple : vecteur générique de taille fixe

On définit d’abord un template générique pour un vecteur de taille arbitraire connue a la compilation.

template <typename T, int N>
struct vec
{

T datalN];

T& operator[](int i) { return datalil; }
T const& operator[](int i) const { return data[il; }
i

Ce template fonctionne pour tout type T et toute taille n.

Spécialisation totale pour un vecteur 2D

Supposons que I’on souhaite un traitement particulier pour les vecteurs 2D, par exemple :

* acces direct via x et y,
* code plus lisible,
« ¢éventuellement plus optimisable.

95

On définit alors une spécialisation totale :

template <typename T>
struct vec<T, 2>

{
T X, ¥;
vec() : x(0), y(@) {}
vec(T x_, Ty_) : x(x_), y(y_) {}
T& operator[](int i)
{
return (i ==0) ? x : vy;
}
T const& operator[](int i) const
{
return (i ==0) ? x : vy;
}
+
Ici:
* vec<T,2> est un type complétement différent de vec<T,N>,
* le tableau data[N] n’existe plus,
* le comportement est enti¢rement redéfini pourn = 2.
Utilisation

vec<float, 3> v3;

v3[o] = 1.0f;
v3[1] = 2.0f;
v3[2] = 3.0f;

vec<float, 2> v2(1.0f, 4.0f);
std::cout << v2[0] << " " << v2[1] << std::endl;

* vec<float,3> utilise le template générique,
* vec<float,2> utilise la spécialisation totale.

Le choix est fait a la compilation, sans aucun test a ’exécution.

Spécialisation totale pour un type et une taille précis

I1 est aussi possible de spécialiser pour un type et une taille précis.

template <>
struct vec<float, 3>

{
float x, y, z;
vec() : x(0.f), y(o.f), z(0.f) {}
vec(float x_, float y_, float z_) : x(x_), y(y_), z(z_) {}
float norm2() const
{
return xxx + ykxy + z*z;
+
+
Utilisation :

vec<float,3> v(1.f, 2.f, 3.f);
std::cout << v.norm2() << std::endl;

Ici:

96

* cette version est utilisée uniquement pour vec<float, 3>,
* toutes les autres combinaisons (vec<double, 3>, vec<float, 4>, etc.) utilisent le template générique.

Comparaison avec la spécialisation partielle

+ Spécialisation totale Tous les paramétres template sont fixés (vec<float,3>). — un cas unique, comportement
enticrement redéfini.

+ Spécialisation partielle Seule une partie des paramétres est fixée (vec<T,2>). — une famille de types partageant
un comportement spécifique.

6.6 Priorité entre spécialisation et surcharge

Il est fréquent de confondre surcharge (overloading) ct spécialisation de templates, mais ce sont deux mécan-
ismes distincts qui interviennent 2 des moments différents de la compilation. Comprendre leur ordre de priorité
est essentiel pour éviter des comportements surprenants.

L’idée clé est la suivante :

La surcharge est résolue avant la spécialisation de templates.

Autrement dit, le compilateur choisit d’abord quelle fonction appeler, puis seulement quelle version de
template instancier.
Etape 1 : résolution de surcharge (overloading)

Lorsque plusieurs fonctions portent le méme nom, le compilateur commence par appliquer les régles classiques de
surcharge :

* correspondance exacte des types,
* conversions implicites,
+ templates vs fonctions non templates.

Exemple :

void display(int x)
{
std::cout << "fonction normale int\n";

}

template <typename T>
void display(T x)

{ std::cout << "template generique\n";
b

Appel :
display(3);

Résultat :

fonction normale int

Une fonction non template est toujours prioritaire sur une fonction template si elle correspond exactement.

Etape 2 : sélection du template

Si aucune fonction non-template ne correspond, le compilateur considére les fonctions templates et tente d’en
déduire les paramétres.

97

template <typename T>
void display(T x)
{
std::cout << "template generique\n";

}

display(3.5); // T = double

Ici, le template est sélectionné car aucune fonction classique ne correspond.

Etape 3 : spécialisation du template

Une fois qu’un template a été choisi, le compilateur cherche s’il existe une spécialisation plus spécifique pour
les parameétres déduits.

template <typename T>
void display(T x)
{
std::cout << "template generique\n";

b

template <>
void display<bool>(bool x)

{

std::cout << "specialisation bool\n";
}

Appels :
display(5); // template générique

display(true); // spécialisation bool

Résultat :

template generique
specialisation bool

La spécialisation ne participe pas a la surcharge. Elle est sélectionnée aprés que le template générique a été
choisi.

Cas subtil : spécialisation vs surcharge

Considérons maintenant :

template <typename T>
void display(T x)
{
std::cout << "template generique\n";

}

template <>
void display<int>(int x)

{
std::cout << "specialisation int\n";
1
void display(int x)
{
std::cout << "fonction normale int\n";
Iy
Appel :
display(3);
Résultat :

98

fonction normale int

Explication :

1. le compilateur voit une fonction non-template display(int) — prioritaire,
2. le template n’est méme pas considére,
3. la spécialisation du template est ignorée.

Une spécialisation ne peut jamais battre une surcharge non-template.

Pourquoi ce comportement ?

Parce que :

+ la surcharge est une décision syntaxique et locale,
+ la spécialisation est une décision interne au template,
» mélanger les deux niveaux rendrait la compilation ambigué.

C++ impose donc une hiérarchie stricte.

Résumé de la priorité (ordre exact)

Lors d’un appel de fonction :

1. Sélection des fonctions candidates (nom, portée).

2. Résolution de surcharge :

« fonctions non templates,
* puis fonctions templates.

3. Siun template est choisi :
* sélection de la spécialisation la plus spécifique.

4. Instanciation du code correspondant.

Régle pratique a retenir

La surcharge choisit la fonction. La spécialisation choisit ’implémentation du template.

Bonnes pratiques

« Utiliser la surcharge pour proposer des interfaces différentes.
« Utiliser la spécialisation pour adapter un comportement interne a un template.
+ Eviter de mélanger surcharge et spécialisation sur un méme nom sans raison claire.

6.7 Alias

Alias de types dans les templates (typedef et using)

Les alias de types permettent de donner un nom plus lisible ou plus expressif a un type, souvent complexe. Ils
jouent un réle central en programmation générique, car ils facilitent la déduction de types, 1’écriture de fonctions

génériques et la lisibilité des interfaces.
En C++, il existe deux mécanismes équivalents :

* typedef (historique),
* using (moderne, recommandé).

99

Alias avec typedef (forme historique)

typedef unsigned int uint;

Ce mécanisme fonctionne, mais devient rapidement peu lisible avec des types complexes, notamment en présence
de templates.

Alias avec using (forme moderne)

Depuis C++11, on préfére utiliser using, plus clair et plus puissant.

using uint = unsigned int;

Cette syntaxe est équivalente a typedef, mais beaucoup plus lisible, surtout avec des templates.

Alias dans une classe template

Les alias sont trés souvent utilisés a I’intérieur des classes templates pour exposer leurs paramétres internes.
Exemple avec un vecteur générique :

template <typename T, int N>
class vec
{
public:
using value_type = T;
static constexpr int size() { return N; }

T& operator[](int i) { return datalil; }
T const& operator[](int i) const { return datalil; }

private:
T datalN];
18

Ici:

* vec<T,N>::value_type donne acces au type stocke,
* vec<T,N>::size() donne acceés a la taille connue a la compilation.

Ces alias rendent la classe auto-descriptive et facilitent son utilisation dans du code générique.

Utilisation des alias dans des fonctions templates

Gréce aux alias, on peut écrire des fonctions génériques sans connaitre explicitement les paramétres template.

template <typename V>
typename V::value_type sum(V const& v)

{
typename V::value_type s = 0;
for (int i = 0; i < V:i:size(); ++i)
s += v[i];
return s;
+
Utilisation :

vec<float,3> v;
v[e]l = 1.ef; v[1] = 2.0f; v[2] = 3.0f;

float s = sum(v);

Ici:

* le type de retour est automatiquement déduit via value_type,
+ la fonction fonctionne pour tout type de vecteur compatible.

100

Alias et types dépendants (typename)

Lorsque 1’on accede a un alias dépendant d’un paramétre template, il est nécessaire d’utiliser le mot-clé typename
pour indiquer qu’il s’agit bien d’un type.

typename V::value_type

Sans typename, le compilateur ne peut pas savoir si value_type €st un type ou une valeur statique.

Alias templates (alias paramétrés)

Les alias eux-mémes peuvent étre templates, ce qui permet de simplifier des types trés complexes.

template <typename T>
using vec3 = vec<T, 3>;

Utilisation :

vec3<float> a;
vec3<double> b;

Ici:

* vec3<float> est équivalent a vec<float, 3>,
* 1’alias améliore fortement la lisibilité.

Alias et cohérence des interfaces génériques

Les alias sont largement utilisés dans la STL :

* value_type,
¢ iterator,
* reference,

* const_reference.

Respecter ces conventions permet de rendre ses classes compatibles avec les algorithmes génériques.
Exemple :

template <typename Container>
void print_container(Container const& c)
{
for (typename Container::value_type const& v : c)
std::cout << v << " '}

101

7 Vue matérielle

Ce chapitre propose une vue simplifiée mais cohérente du matériel sous-jacent a I’exécution d’un programme
C/C++. L’objectif n’est pas d’entrer dans 1’électronique fine, mais de comprendre comment le code est physique-
ment exécuté, et pourquoi certaines notions (mémoire, cache, alignement, performances) sont cruciales en infor-
matique graphique et scientifique.

7.1 Principe du transistor

Le transistor est I’¢lément fondamental de tout circuit électronique moderne. Un processeur contient aujourd’hui
des milliards de transistors, chacun se comportant comme un interrupteur controélable électroniquement.

Role fondamental

Un transistor peut étre vu comme :

* un interrupteur ouvert ou fermé,
« commandé par un signal électrique.

On associe classiquement :

+ état bloqué — o
* état passant — 1

Ces deux états permettent de représenter I’information binaire.

Principe physique du transistor

Principe physique du transistor

Le transistor est avant tout un objet physique, dont le fonctionnement repose sur les propriétés électriques de la
matiére a 1’échelle microscopique. Comprendre son principe physique permet de saisir comment un phénomene
continu (tensions, champs électriques, électrons) est exploité pour produire une logique discréte (o / 1).

Le silicium et la conduction électrique

Le matériau central de 1’¢électronique moderne est le silicium, un cristal dont les électrons sont liés aux atomes
par des liaisons covalentes. A 1’état pur :

* le silicium conduit trés mal le courant,
+ il ne se comporte ni comme un isolant parfait, ni comme un bon conducteur.

Sa conductivité peut cependant étre controlée grace au dopage.

Dopage et porteurs de charge
Le dopage consiste a introduire une tres faible quantité d’atomes étrangers dans le cristal de silicium.

* Dopage de type N Atomes avec un électron en excés — apparition d’électrons libres (charges négatives)

* Dopage de type P Atomes avec un ¢électron manquant — apparition de trous (charges positives effectives)

Ces porteurs de charge sont mobiles sous I’effet d’un champ électrique, ce qui permet le passage du courant.

102

Jonction PN et controle du courant

Lorsqu’une région dopée P est mise en contact avec une région dopée N, il se forme une jonction PN.
A T’interface :

* les électrons et les trous se recombinent,
* une zone appauvrie en charges apparait,
* cette zone crée une barriére de potentiel.

Selon la tension appliquée :

« la barriére est abaissée — courant autorisé,
* la barriére est renforcée — courant bloqué.

C’est la premiére brique physique du contrdle électrique.

Le transistor MOSFET : champ électrique plutét que courant

Les processeurs modernes utilisent presque exclusivement des transistors MOSFET — Metal Oxide Semicon-
ductor Field Effect Transistor.

* Metal-Oxide-Semiconductor (MOS) : Décrit la structure physique (une “grille” métallique isolée du semi-
conducteur par une couche d’oxyde).

* Field-Effect (Effet de Champ) : Décrit le principe de commande. C’est un champ électrique (créé par une
tension) qui contrdle le passage du courant, et non un courant (contrairement au transistor bipolaire).

Contrairement aux anciens transistors, ils sont contr6lés par un champ électrique (une tension), et non par un
courant, ce qui réduit considérablement leur consommation.
Un MOSFET est constitué¢ de quatre terminaux principaux :

1. Source (S) : L’entrée des électrons.

2. Drain (D) : La sortie des électrons.

3. Grille (G) : L’électrode de commande.
4. Substrat (Body) : Le corps du transistor.

L’innovation clé : La Grille est isolée électriquement du canal par une couche d’Oxyde extrémement fine.

3. L’Analogie du Robinet Pour comprendre le fonctionnement, visualisez un robinet d’eau :

Composant MOSFET Analogie Robinet Role

Source Arrivée d’eau Fournit le courant.

Drain Sortie d’eau Recoit le courant.

Grille Poignée Controle le débit sans toucher I’eau.
Tension Force sur la poignée La commande d’ouverture.

4. La Physique de la Commutation : La Tension de Seuil () Le passage du courant n’est pas instantané. Il
repose sur un phénomene appelé I’inversion.

* Aurepos () : Le transistor est une barriére. Aucun courant ne passe entre Source et Drain.

* Sous tension () : La tension positive sur la grille agit comme un aimant. Elle attire les électrons minoritaires
du substrat vers la surface, juste sous I’oxyde.

* Le Seuil () : Lorsque la tension dépasse une valeur critique appelée Tension de Seuil (), la concentration
d’¢électrons est suffisante pour former un “pont” conducteur entre la Source et le Drain : le canal est créé.

103

5. Les Régimes de Fonctionnement (Mathématique simplifiée) Le comportement du courant de drain ()
suit trois régimes selon les tensions appliquées :

1. Régime de Blocage (Cut-off) :

* Le robinet est fermé. .
* Interprétation logique : Etat (.

2. Régime Linéaire (Ohmique) :

* Le canal est ouvert, mais la différence de potentiel Drain-Source est faible. Le transistor agit comme une
simple résistance.

* est proportionnel a la tension appliquée.

3. Régime de Saturation :

 Le canal est pleinement passant et le courant est maximal et constant pour une tension de grille donnée.
* C’est le régime utilisé pour I’amplification, ou 1’état “pleinement passant” en logique numérique.
o Interprétation logique : Etat 1.

6. Du phénoméne physique au bit logique En informatique, on abstraite ces comportements complexes
pour ne garder que deux états stables :

+ Tension basse ($ <V_{th}$) : Transistor Bloqué Bit o
* Tension haute ($ > V_{th}$) : Transistor Saturé Bit 1

Cependant, a 1’échelle nanométrique actuelle (transistors de quelques nanométres), des contraintes physiques
réapparaissent :

+ Courants de fuite : Méme bloqué, le transistor laisse passer un infime courant (effet tunnel), ce qui chauffe
le processeur.

+ Dissipation thermique : C’est la limite principale a ’augmentation de la fréquence des horloges (GHz).
Echelle nanométrique et contraintes physiques

Les transistors actuels mesurent quelques nanométres. A cette échelle

* les effets quantiques deviennent significatifs,
* des courants de fuite apparaissent,
+ la dissipation thermique devient critique.

Ces contraintes expliquent :
* les limites de fréquence des processeurs,
* la nécessité du parallélisme,
* I’importance de ’efficacité énergétique.
Du transistor a la logique
En combinant plusieurs transistors, on construit :
* des portes logiques (AND, OR, NOT, XOR),

* puis des circuits plus complexes :

additionneurs,
multiplexeurs,
registres,

— unités de calcul.

Exemple conceptuel :

* une addition enticre est réalisée par une cascade de portes logiques,
+ chaque porte est elle-méme constituée de transistors.

Ainsi, toute instruction C++ (addition, comparaison, saut conditionnel) se traduit ultimement par des commu-
tations de transistors.

104

7.2 Structure de base de la mémoire et des opérations arith-
métiques
Principes de la mémoire

La sauvegarde d’un élément en mémoire repose sur une organisation trés précise de transistors, différente selon
le type de mémoire. Voici une explication progressive, en partant du bit jusqu’aux mémoires utilisées dans un CPU.

7.3 Organisation minimale : stocker un bit
Un bit doit :

* représenter o ou 1,
* rester stable dans le temps,
* pouvoir étre lu et modifié.

On notera plusieurs maniére de stocker I’information a 1’aide de transistors:

1. La mémoire statique (SRAM)
La SRAM (Static Random Access Memory) est utilisée pour :

* les registres du processeur,
* les caches L1, L2 et L3.

Temps d’accés typique: 0,3 a 2 ns
Elle est :

+ extrémement rapide,

+ non rafraichie (tant qu’elle est alimentée),

* trés stable,

* mais coiiteuse en surface, car chaque bit utilise plusieurs transistors.

Principe général

Un bit de SRAM est stocké a I’aide d’une bascule électronique bistable, réalisée avec des transistors.
Organisation classique :

* 6 transistors par bit (cellule 67T) :

— 4 transistors forment deux inverseurs croisés,
— 2 transistors servent a 1’accés en lecture/écriture.

Fonctionnement :

* les inverseurs se maintiennent mutuellement dans un état stable,
* I’état correspond a @ ou 1,
* tant que I’alimentation est présente, 1’état est conservé.

Lecture :

 non destructive,
* trés rapide.

Ecriture :
« force temporairement un état sur la bascule.

La SRAM stocke donc I’information sous forme d’un équilibre électrique actif entre transistors.

105

2. La mémoire dynamique (DRAM)

La DRAM (Dynamic Random Access Memory) constitue la mémoire centrale d’un ordinateur (RAM).
Temps d’acceés typique: 50 a 100 ns
Elle est :

* plus lente que la SRAM,

* volatile,

* nécessite un rafraichissement périodique,

* beaucoup plus dense (moins de transistors par bit).

Principe général

Un bit de DRAM est stocké sous forme de charge électrique.
Organisation classique :

* 1 transistor + 1 condensateur par bit (cellule IT1C).
Fonctionnement :

* le condensateur stocke une charge (1) ou est vide (o),
* le transistor contréle ’acces a la cellule.

Lecture :

* la charge est mesurée,
* la lecture est destructive (le condensateur se décharge),
+ la valeur doit étre réécrite immédiatement.

Rafraichissement :

* les charges fuient naturellement,
+ chaque cellule doit étre relue et réécrite périodiquement (environ toutes les 64 ms).

La DRAM stocke I’information sous forme de charge passive, d’ou la nécessité du rafraichissement.

3. La mémoire flash

La mémoire flash est une mémoire non volatile utilisée pour :

e les SSD,

* les clés USB,

* les cartes mémoire,

* le stockage firmware (BIOS, microcontrdleurs).

Elle est :

* persistante sans alimentation,

* plus lente a I’écriture que la RAM,

* limitée en nombre de cycles d’écriture,
* trés dense.

Temps d’accés typique: 50 a 100 ps (microsecondes) en lecture, 200 pus a quelques ms en écriture
Principe général

Un bit de mémoire flash est stocké grace a un transistor a grille flottante.
Organisation :

« la cellule est un transistor MOS modifié,
+ elle possede une grille flottante isolée électriquement.

106

Fonctionnement :

* ’écriture consiste a injecter des électrons dans la grille flottante a I’aide d’une haute tension,
* les électrons restent piégés dans 1’isolant,

* la présence ou I’absence de charge modifie le comportement du transistor.

Lecture :

* non destructive,
* basée sur la mesure du seuil de conduction.

Effacement :

* se fait par blocs entiers,
* nécessite également des tensions élevées.

La mémoire flash stocke I’information sous forme de charges piégées physiquement, ce qui explique sa per-
sistance sans alimentation.

Comparaison synthétique

Type de mémoire Volatile Transistors / bit Rafraichissement Usage principal
SRAM oui ~6 non registres, caches
DRAM oui 1 + 1 condensateur oui mémoire centrale
Flash non 1 (spécifique) non stockage persistant

Principes des opérations arithmétiques

Du code C++ a ’instruction machine

Une opération arithmétique écrite en C++ est une expression abstraite :

c=a+b;

Pour le processeur, cela correspond a une séquence bien définie :

. charger a et b depuis la mémoire vers des registres,

. activer ’unité arithmétique avec 1’opération demandée,
produire un résultat binaire,

stocker le résultat dans un registre ou en mémoire.

L =

Le processeur ne “comprend” jamais les variables ou les types C++ : il ne manipule que des registres, des
opcodes, et des bits.

Role central de PALU

Les opérations arithmétiques et logiques sont réalisées par I’ALU (Arithmetic Logic Unit).
Fonctions principales de I’ALU :

« addition et soustraction,

* opérations logiques (AND, OR, XOR),

* comparaisons,

+ décalages binaires.

Toutes ces opérations reposent sur :

* des circuits combinatoires,

+ composés de portes logiques,

+ elles-mémes construites a partir de transistors.

L’ALU recgoit :

* deux opérandes depuis les registres,
* un code indiquant I’opération a effectuer,
* et produit un résultat ainsi que des drapeaux d’état.

107

Soustraction, comparaisons et logique interne
Dans I’ALU :

* la soustraction est implémentée comme une addition modifiée,
* les comparaisons exploitent le résultat d’une soustraction interne,
* les opérateurs relationnels (<, >, ==) ne produisent qu’un bit logique.

Exemple conceptuel :

if (a<b) { ...}

Matériellement :

* le processeur calcule a - b,
+ observe le signe ou le flag de retenue,
* et en déduit le résultat du test.

Multiplication et division : opérations composées

Contrairement a I’addition, la multiplication et la division :

* nécessitent plusieurs étapes internes,
* mobilisent des circuits plus complexes,
* sont donc plus coliteuses en cycles.

La multiplication repose sur :

* des décalages,
* des additions partielles,
* ou des unités spécialisées fortement optimisées.

La division :
* est généralement itérative,

* et constitue 1'une des opérations arithmétiques les plus lentes.

Opérations sur les nombres flottants

Les calculs sur les flottants sont pris en charge par une unité distincte : la FPU.
Elle réalise :

+ I’alignement des exposants,

* P’opération sur les mantisses,
 la normalisation du résultat,

* 1’arrondi selon la norme IEEE.

Ces opérations sont plus colteuses que celles sur les entiers, mais entiérement gérées par le matériel.
Instructions vectorielles (SIMD)

Les processeurs modernes disposent d’unités vectorielles capables d’appliquer une méme opération sur plusieurs
données simultanément.

Principe :

* une instruction,
* plusieurs opérandes traités en parallele.

C’est une extension directe des opérations arithmétiques de base, utilisée pour :

* I’informatique graphique,
* le traitement de signaux,
* le calcul scientifique.

108

Ordonnancement et pipeline
Les opérations arithmétiques ne sont pas exécutées isolément :

* elles sont pipelinées,
 réordonnées,
* exécutées en parallele lorsque possible.

Ainsi :

* plusieurs additions peuvent étre en cours simultanément,
* tant que les dépendances de données sont respectées.

Coiit réel d’une opération
Dans un programme réel :

* le temps d’accés a la mémoire est souvent dominant,
* le calcul arithmétique pur est rarement le goulot d’étranglement.

Optimiser les performances revient souvent a :

« réduire les acceés mémoire,
« améliorer la localité des données,
+ exploiter le parallélisme.

Idée clé a retenir

Les opérations arithmétiques sont des briques matérielles élémentaires, orchestrées par le processeur
via I’ALU, la FPU et les unités vectorielles. Le code C++ exprime des calculs logiques, mais leur
exécution repose sur I’ordonnancement, le parallélisme et I’acces efficace aux données.

7.4 Notion de cache mémoire
Probléme fondamental : 1a latence mémoire
Accéder a la mémoire principale (RAM) est :
* beaucoup plus lent que d’accéder aux registres ou aux unités de calcul.
Ordre de grandeur :
* registre : ~1 cycle
» cache L1 : ~3-5 cycles

» cache L2 : ~10 cycles
RAM : ~100-300 cycles

Sans mécanisme intermédiaire, le CPU passerait son temps a attendre la mémoire.

Principe du cache

Le cache mémoire est une mémoire intermédiaire :

* plus petite que la RAM,
* beaucoup plus rapide,
* intégrée au processeur.

Il stocke des copies de blocs de mémoire récemment utilisés.

109

Hiérarchie de cache

On distingue généralement :
« L1 : trés petit, trés rapide, par ceeur,
* L2 : plus grand, un peu plus lent,

» L3 : partagé entre cceurs.

Chaque niveau agit comme un tampon vers le niveau inférieur.

Localité spatiale et temporelle
Le cache repose sur deux principes fondamentaux :
* Localité temporelle Une donnée utilisée récemment a de fortes chances d’étre réutilisée.

* Localité spatiale Si on accéde a une adresse mémoire, les adresses voisines ont de fortes chances d’étre
utilisées.

C’est pourquoi :

* les tableaux contigus,
e les std::vector,
* les parcours séquentiels,

sont beaucoup plus performants que des acces aléatoires.

Lien avec la programmation C++

Exemples de code favorables au cache :

for(int i = @; i < N; ++i)
sum += arrayl[i];

Exemples défavorables :

for(int i = @; i < N; ++i)
sum += array[random_index[il];

En informatique graphique, ce point est crucial :

* traitement de sommets,
« simulation de particules,
* parcours de buffers GPU/CPU.

110

8 Meéthodologies de développement et
bonnes pratiques

Ce chapitre présente les principes méthodologiques fondamentaux permettant de produire du code C++ :

« lisible,

* robuste,

* testable,

* maintenable,

tout en respectant les contraintes de performance et de bas niveau propres au langage.
Ces principes s’appliquent aussi bien a de petits programmes qu’a des projets complexes (simulation, moteur
graphique, calcul paralléle).

8.1 Qualité de code : objectifs concrets
La qualité de code ne se mesure pas a 1’élégance pergue, mais a des critéres pratiques :

« Lisibilité : le code est compréhensible sans effort excessif.

* Localité : comprendre une fonction ne nécessite pas d’explorer tout le projet.

* Robustesse : les erreurs sont détectées et traitées explicitement.

* Testabilité : le code peut étre validé automatiquement.

« Evolutivité : les modifications futures sont possibles sans réécriture massive.

* Performance maitrisée : optimisation guidée par des mesures, pas par intuition.

Notons que lorsque 1’on travaille a plusieurs, la lisibilité du code doit étre la priorité. Un code lisible :

« facilite la relecture et les revues de code,

* réduit les erreurs lors des modifications,

* accélere I’intégration de nouveaux contributeurs,
+ permet de raisonner et de tester plus facilement.

Dans la plupart des cas, il faut privilégier la lisibilité et la simplicité plutét que des optimisations micro-
performantes prématurées. L’efficacité peut étre recherchée ensuite, de manicre ciblée et mesurée, quand un goulot
de performance est avéré.

Bonnes pratiques pour la lisibilité : noms explicites, fonctions courtes, commentaires quand le code n’est pas
auto-documenté, formatage cohérent, et revues de code systématiques.

8.2 Principes généraux : KISS, DRY, YAGNI
KISS — Keep It Simple, Stupid

Un code simple est plus fiable qu’un code complexe.

* Préférer une implémentation directe a une abstraction prématurée.
« Eviter les constructions “astucieuses” difficiles a expliquer.
* Une fonction devrait idéalement tenir sur un écran.

Exemple (KISS) :

// Version condensée et moins lisible : logique imbriquée, calcul d'index

// difficile a suivre, tout est condensé sur quelques lignes.

int count_neighbors_ugly(const std::vector<int>& grid, size_t w, size_t h,
size_t x, size_t y)

{
int c = 0;
// balayer un rectangle 3x3 centré sur (x,y) en jouant sur les bornes
size_t start = (y 2y -1:0) xw+ (x?x-1:0);

111

size_tendy=(y+1<h?y+1:h-1);
size_tend x=(x+1<w?x+1:w-1);
for (size_t idx = start;; ++idx) {
size_t cx = idx % w;
size_t cy = idx / w;
if (!(cx == x && cy == y)) c += grid[idx];
if (cy == end_y && cx == end_x) break; // logique subtle
+

return c;

// Version claire et simple : fonctions auxiliaires et boucles explicites
inline bool in_bounds(size_t x, size_t y, size_t w, size_t h) { return x <w & y < h; }
inline int at(const std::vector<int>& g, size_t w, size_t x, size_t y) { return gly x w + x]; }

int count_neighbors(const std::vector<int>& grid, size_t w, size_t h,
size_t x, size_t y)

{
int ¢ = 0;
size t yo = (y >0) 2y -1 : 0;
size.tyl=(y+1<h) ?2y+1:h-1;
size_t x0 = (x >0) ? x -1 : 0;
sizet x1 = (x+1<w) ?2x+1:w-1;
for (size_t yy = y0; yy <= y1; ++yy) {
for (size_t xx = x0; xx <= x1; ++xx) {
if (xx == x & yy == y) continue; // ignorer la cellule centrale
c += at(grid, w, xx, yy);
}
}
return c;
+

DRY — Don’t Repeat Yourself

Une logique ne doit exister qu’a un seul endroit.
Attention :

éliminer toute duplication peut mener a des abstractions inutiles.

Une duplication locale et simple est parfois préférable a une généralisation complexe.
Exemple (DRY) :

// Duplication (moins bon) : deux fonctions trés similaires
double average_int(const std::vector<int>& v) {

if (v.empty()) return 0.0;

long sum = 0;

for (int x : v) sum += Xx;

return double(sum) / v.size();

double average_double(const std::vector<double>& v) {
if (v.empty()) return 0.0;
double sum = 0;
for (double x : v) sum += x;
return sum / v.size();

// Refactorisation (DRY) : une implémentation générique évite la duplication
template<typename T>
double average(const std::vector<T>& v) {

if (v.empty()) return 0.0;

long double sum = 0;

for (T x : v) sum += x;

return double(sum / v.size());

// Usage :

// std::vector<int> vi = {1,2,3};

// std::vector<double> vd = {1.0,2.0,3.0};

// double al = average(vi); // fonctionne pour int

// double a2 = average(vd); // fonctionne pour double

112

YAGNI - You Aren’t Gonna Need It

Ne pas implémenter des fonctionnalités “au cas ou” si elles ne sont pas nécessaires.
Ce principe est particuliérement important en C++, ou : - les templates, - 1a généricité, - et la méta-programmation
peuvent encourager une complexité excessive trop tot.
Exemple (YAGNI) :

// Prématurément généralisé (YAGNI)
template <typename T = float, int N = 3>
struct vec { T datalN]; };

// Version simple et suffisante pour l'usage courant
struct vec3 { float x, y, z; };

8.3 Invariants, assertions et contrat de fonction

Un programme robuste ne se contente pas de “fonctionner dans les cas normaux” : il exprime explicitement ses
hypothéses et vérifie qu’elles sont respectées.
Ces hypothéses constituent ce que 1’on appelle le contrat du code.

Pourquoi parler de contrat ?

Lorsqu’une fonction est appelée, deux points de vue existent :

* le point de vue de ’appelant “Qu’ai-je le droit de passer a cette fonction ?”

* le point de vue de la fonction “Qu’est-ce que je garantis en retour ?”
Si ces régles sont implicites ou seulement “dans la téte du développeur”, le code devient fragile :

« erreurs silencieuses,
+ comportements indéterminés,
* bugs difficiles a diagnostiquer.

Le contrat permet de formaliser ces régles. L’ensemble de ces régles constitue ce que I’on appelle la program-
mation par contrat.

Les trois notions clés du contrat
On distingue trois types de regles complémentaires.
1. Préconditions
Une précondition est une condition qui doit étre vraie avant I’appel d’une fonction.

+ Elle décrit ce que la fonction attend.
+ Elle est de la responsabilité de I’appelant.

Exemples :

 un index doit étre valide,
* un pointeur ne doit pas étre nul,
* un diviseur doit étre non nul.

113

2. Postconditions

Une postcondition est une condition qui doit étre vraie aprés ’exécution de la fonction.

+ Elle décrit ce que la fonction garantit.
+ Elle est de la responsabilité de la fonction.

Exemples :

¢ la taille d’un conteneur a augmenté,
* une valeur retournée respecte un intervalle,
* un état interne a été mis a jour correctement.

3. Invariants

Un invariant est une propriété qui doit étre toujours vraie pour un objet valide.

* 1l est établi par le constructeur.
* Il doit étre préservé par toutes les méthodes publiques.

Exemples :

* 0 <size < capacity,

* un rayon est toujours strictement positif,

+ deux pointeurs membres sont soit tous valides, soit tous nuls.

Ilustration conceptuelle : pile (stack)

Avant de voir du C++, voici une vue conceptuelle du contrat d’une pile.

Entité : Pile (Stack)

Invariant :
0 <= size <= capacity

Constructeur(capacity):
établit 1'invariant
size := 0
capacity := capacity

push(value):
précondition : size < capacity
postcondition : top == value, size augmenté de 1

pop():
précondition : size > @
postcondition : size diminué de 1

L’invariant doit étre vrai aprés chaque appel public, quelle que soit la séquence d’opérations.

Assertions a I’exécution (assert)

Les assertions permettent de vérifier ces régles pendant I’exécution, principalement en phase de développement.
En C++, on utilise assert pour détecter des erreurs de programmation.

#include <cassert>

float safe_div(float a, float b)

{
assert(b != 0.0f & "Division par zero");
return a / b;

Ici:

* b != 0.0f est une précondition,
* I’assertion documente et vérifie cette hypothése.

114

A quoi servent les assert ?
Les assertions permettent de :

* documenter les hypothéses internes du code,
« détecter rapidement des erreurs de logique,
* arréter le programme au point exact du probléme en debug.

Elles sont donc un outil de développement, pas un mécanisme de gestion d’erreurs utilisateur.

Bonnes pratiques avec assert

utiliser assert pour des erreurs de programmation. Les assert sont théoriquement “inutile” au bon fonction-

nement du programme, ils ne servent qu’a faciliter la programmation en détectant des cas inattendues/non
prévus qui ne devraient jamais arriver.

ne pas utiliser assert pour :

— fichiers absents,
— entrées utilisateur invalides,
— erreurs récupérables

* ne jamais écrire d’effets de bord :

assert(++i < 10); // interdit

// Ici la valeur de i est modifié aprés l'exécution de assert.

// Lors d'une compilation en mode "release", l'assertion n'est pas exécuté, et la valeur de i sera
différente dans le programme.

+ fournir un message explicite :

assert(ptr & "ptr ne doit pas étre nul");

Mode debug vs release

* En debug : les assert sont actives
» En release : clles sont supprimées (NDEBUG)

Note: Le programme ne doit jamais dépendre des assertions pour fonctionner correctement.

Assertions a la compilation (static_assert)

Certaines régles peuvent étre vérifiées avant méme ’exécution, a la compilation.
C’est le role de static_assert.

#include <type_traits>

template <typename T>
T square(T x)
{
static_assert(std::is_arithmetic_v<T>,
"square attend un type arithmetique");
return x * X;

Ici :

* la contrainte est vérifiée a la compilation,
* une mauvaise utilisation empéche la génération de I’exécutable.

115

Quand utiliser static_assert ?

« tailles connues a la compilation,
* contraintes sur des types templates,
* hypothéses structurelles impossibles a vérifier a I’exécution.

Régle générale : préférer les vérifications a la compilation quand c’est possible.

Exemple complet : pile avec invariant et assertions

#include <cassert>
#include <vector>

struct Stack {
std::vector<int> data;

size_t capacity;

// Invariant :
// 0 <= data.size() <= capacity

explicit Stack(size_t cap) : capacity(cap)

{
assert(capacity > @0 && "capacity doit étre positive");
}
void push(int v)
{
// précondition
assert(data.size() < capacity & "push: pile pleine");
data.push_back(v);
// postcondition
assert(data.back() == v && "push: sommet incorrect");
}
int pop()
{
// précondition
assert(!data.empty() &% "pop: pile vide");
int v = data.back()
data.pop_back();
// invariant toujours valide
assert(data.size() <= capacity && "invariant violé");
return v;
}
b
Résumé

» Un contrat décrit ce que le code attend et garantit.

* Les préconditions sont la responsabilité de I’appelant.

+ Les postconditions sont la responsabilité de la fonction.
* Les invariants définissent les états valides d’un objet.

* assert vérifie le contrat a I’exécution (debug).

* static_assert vérifie le contrat a la compilation.

« Utilisés correctement, ils rendent le code :

— plus sir,

116

— plus lisible,
— et plus facile a maintenir.

Alternatives a asserts

La fonction assert reste assez limité en terme de fonctionalité. Des outils alternatifs peuvent aider a exprimer et
vérifier des contrats de fagon plus lisible, slire et maintenable pour des codes de grande envergure :

* GSL (Guideline Support Library) : fournit Expects() / Ensures() (macros ou fonctions) pour documenter
pré/postconditions, ainsi que not_null<T> et span<T> pour des pointeurs et vues sires.

* Types résultat (expected/Outcome) : utiliser t1::expected / Outcome OU std: :expected quand disponible pour
représenter explicitement les erreurs récupérables au lieu d’exceptions ou codes magiques.

+ Concepts & static_assert / constexpr : remonter les vérifications au moment de la compilation quand c’est

possible (templates, contraintes de types), réduisant le besoin d’assertions runtime.

Bibliothéques de contrat : Boost.Contract et autres frameworks offrent des annotations require/ensure/in-

variant plus riches (contrats activables/désactivables, diagnostics centralisés).

+ Annotations légéres (Expects/Ensures) : définir des wrappers Expects(condition) permet d’uniformiser les

messages et d’activer des comportements différents selon la configuration (throw, abort, log).

Outils complémentaires : sanitizeurs (ASan/UBSan/TSan) et analyse statique (clang-tidy, cppcheck) dé-

tectent des classes d’erreurs que les assertions seules ne couvrent pas.

8.4 Tests et Test-Driven Development (TDD)

Un programme peut sembler correct sur quelques exemples simples et pourtant étre faux dans des cas limites ou
aprés une modification ultérieure.
Les tests permettent de vérifier automatiquement que le code respecte son comportement attendu, et surtout que ce
comportement reste correct dans le temps.

Tester ne consiste pas a prouver que le programme est parfait, mais a réduire le risque d’erreur et a détecter
les problémes le plus tot possible.

Pourquoi écrire des tests ?

Les tests sont utiles lorsqu’ils permettent de :

* détecter une erreur avant I’utilisateur final,

« ¢éviter les régressions lors d’une modification ou d’un refactoring,

* documenter le comportement attendu du code de maniére exécutable,
» faciliter ’évolution du code en toute confiance.

Dans un projet réel, les tests sont souvent exécutés automatiquement a chaque modification (intégration con-

tinue).

Qu’est-ce qu’un bon test ?

Un bon test est :

* déterministe : il produit toujours le méme résultat dans les mémes conditions,
* rapide : il doit pouvoir étre exécuté fréquemment,
* isolé : il ne dépend pas d’un état global caché,
* clair : on comprend facilement ce qui est testé et pourquoi,
* localisé : en cas d’échec, la cause est identifiable rapidement.
Grandes catégories de tests
Tests unitaires

Un test unitaire vérifie une fonction ou une classe en isolation.

« sans 1/O,

117

¢ sans acces réseau,
+ sans dépendance matérielle.

I1s sont rapides et trés précis.
Ils sont idéaux pour tester : - fonctions mathématiques, - algorithmes, - structures de données.

Tests d’intégration

Un test d’intégration vérifie I’interaction entre plusieurs composants :

* lecture de fichiers,
+ chargement de ressources,
* threads,

e communication entre modules.

Ils sont plus lents mais plus proches du comportement réel.

Tests de non-régression

Un test de non-régression est ajouté aprés la correction d’un bug.

* il reproduit un cas qui a déja échoué,
* il garantit que ce bug ne réapparaitra pas.

Ces tests sont extrémement précieux sur le long terme.

Structure d’un test : Arrange / Act/ Assert

Un test lisible suit généralement la structure suivante :

1. Arrange : préparation des données,
2. Act : appel du code testé,
3. Assert : vérification du résultat.

Exemple :

// Arrange
float x = -1.0f;

// Act
float y = clamp(x, 0.0f, 1.0f);

// Assert
assert(y == 0.0f);

Cette structure améliore la lisibilité et la maintenance des tests.

Quels cas faut-il tester ?

Pour une fonction donnée, il est recommandé de tester :

1. le cas nominal (utilisation normale),
2. les cas limites (bornes, tailles 0 ou 1, valeurs extrémes),
3. les cas d’erreur (préconditions violées, entrées invalides).

Tester uniquement le cas nominal est rarement suffisant.

118

Outil de test minimaliste (sans framework)

On peut écrire des tests avec assert, mais il est souvent utile d’avoir des messages plus explicites, notamment pour
les flottants.

#include <iostream>
#include <cmath>
#include <cstdlib>

inline void check(bool cond, const charx msg)

{
if (!cond) {
std::cerr << "[TEST FAILED] " << msg << std::endl;
std::exit(1);
}
H
inline void check_near(float a, float b, float eps, const charx msg)
{
if (std::abs(a - b) > eps) {
std::cerr << "[TEST FAILED] " << msg
<< " (a="" << a<<", b=" << b << ")" << std::endl;
std::exit(1);
+
+

8.5 Exemple guidé : tests unitaires pour clamp

Spécification attendue

La fonction clamp(x, a, b) :

e retourne a Si x < a,
e retourne b Si x > b,
e retourne x sinon.

Précondition : a <= b.

Tests

#include <cassert>
float clamp(float x, float a, float b);

int main()
{
// cas nominal
assert(clamp(0.5f, 0.0f, 1.0f) == 0.5f);

// cas limites
assert(clamp(0.0f, 0.0f, 1.0f) == 0.0f);
assert(clamp(1.0f, 0.0f, 1.0f) == 1.0f);

// saturation
assert(clamp(-1.0f, 0.0f, 1.0f) == 0.0f);
assert(clamp(2.0f, 0.0f, 1.0f) == 1.0f);

// violation de précondition (doit échouer en debug)
// clamp(@.0f, 1.0f, 0.0f);

Implémentation :

#include <cassert>

float clamp(float x, float a, float b)

119

assert(a <= b && "clamp: intervalle invalide");
if (x < a) return a;

if (x > b) return b;

return x;

La précondition reléve ici du contrat : sa violation est une erreur de programmation.

8.6 Test-Driven Development (TDD)

Le TDD est une méthodologie dans laquelle le code est écrit en réponse a des tests. Elle vise a transformer le
besoin fonctionnel en comportement vérifiable.

Boucle TDD : Red -> Green -> Refactor

1. Red : écrire un test qui échoue,
2. Green : écrire le code minimal pour faire passer le test,
3. Refactor : améliorer le code sans casser les tests.

Cette boucle est répétée fréquemment.

Intéréts du TDD
Le TDD:

« force a clarifier I’API dés le départ,

+ encourage des fonctions courtes et testables,
* limite la sur-ingénierie (YAGNI),

+ rend les refactorisations beaucoup plus sires.

8.7 Exemple TDD : normalisation d’un vecteur 3D

Spécification

* siv est non nul, normalize(v) retourne un vecteur de norme 1,
« la direction est conservée,
* précondition : norm(v) > .

Etape 1 : test (Red)

#include <cassert>
#include <cmath>

struct vec3 { float x, y, z; };

float norm(vec3 const& v)
{
return std::sqrt(v.xxv.x + V.ykv.y + V.z%v.z);

+
vec3 normalize(vec3 const& v);
int main()
{
vec3 v{3.0f, 0.0f, 4.0f};
vec3 u = normalize(v);

assert(std::abs(norm(u) - 1.0f) < 1le-6f);

float dot = v.x*u.X + v.y*u.y + v.z*u.z;
assert(dot > 0.0f)

120

Etape 2 : implémentation minimale (Green)

#include <cassert>
#include <cmath>

vec3 normalize(vec3 const& v)

{
float n = norm(v);
assert(n > 0.0f & "normalize: vecteur nul");
return {v.x / n, v.y / n, v.z / n};

}

Etape 3 : refactor (Refactor)

Ensuite, on peut :

« factoriser norm2,
+ améliorer les performances,
* ajouter des tests de non-régression.

Conclusion sur les tests et le TDD

Les tests constituent une vérification automatique du contrat d’une fonction. Le TDD fournit une méthodologie
simple pour écrire du code :

deéfinir le comportement -> le vérifier automatiquement -> améliorer I’implémentation en confiance.

Utilisés correctement, les tests rendent le code plus fiable, plus lisible et plus facile a faire évoluer.

Test des cas invalides

Tester uniquement les cas valides est insuffisant : un code robuste doit également détecter correctement les usages
invalides. Il est donc essentiel d’écrire des tests qui vérifient que :

* les préconditions violées sont bien détectées (assertion, exception, erreur retournée),
* les entrées invalides ne produisent pas de résultats silencicusement incorrects,
* le programme échoue de maniére controlée et explicite, plutoét que de continuer dans un état incohérent.

Ces tests négatifs permettent de s’assurer que le contrat du code est réellement respecté, et pas seulement
dans les cas idéaux. Ils sont particuliérement importants lors des refactorisations : un changement interne ne doit
jamais transformer une erreur détectée en comportement silencieux.

Selon la politique de gestion d’erreurs choisie, un test peut vérifier :

* qu’une assertion échoue en mode debug,
* qu’une exception est levée,
* ou qu’un type résultat signale explicitement une erreur.

En pratique, tester les cas invalides est souvent aussi important que tester les cas valides, car c’est précisé-
ment dans ces situations que les bugs les plus coliteux apparaissent.

Trés bien. Voici un cas d’exemple concret, pédagogique, ct cohérent avec ton chapitre, montrant comment
tester un cas invalide. Tu peux I’insérer juste aprés le paragraphe “Tester aussi les cas invalides”.

Je te propose deux variantes complémentaires :

1. cas invalide détecté par assert (erreur de programmation),
2. cas invalide détecté par retour d’erreur (erreur d’usage).

121

Exemple : tester un cas invalide détecté par assert

On reprend la fonction normalize(v) vue précédemment. Sa précondition est que le vecteur ne soit pas nul.

vec3 normalize(vec3 const& v)

{
float n = norm(v);
assert(n > 0.0f & "normalize: vecteur nul");
return {v.x / n, v.y / n, v.z / n};

H

11 est important de vérifier que cette précondition est effectivement détectée.

// Test négatif : violation de précondition (doit échouer en debug)
int main()
{

vec3 zero{0.0f, 0.0f, 0.0f};

// Ce test n'est pas destiné a "passer" :
// en mode debug, l'assertion doit se déclencher.
// normalize(zero);

Remarque :

* ce test est volontairement commenté dans un binaire de test classique,
+ il est souvent activé séparément ou vérifié manuellement,
+ son rdle est de documenter explicitement le comportement attendu en cas d’usage invalide.

Exemple : tester un cas invalide avec gestion d’erreur explicite

Si I’on souhaite gérer les entrées invalides sans faire échouer le programme, on peut utiliser un type résultat.

#include <optional>

std::optional<vec3> normalize_safe(vec3 const& v)

{
float n = norm(v);
if (n <= 0.0f)
return std::nullopt;
return vec3{v.x / n, v.y / n, v.z / n};
H

Test correspondant :

#include <cassert>

int main()
{
vec3 zero{0.0f, 0.0f, 0.0f};

auto r = normalize_safe(zero);
assert(!r.has_value()); // le cas invalide est bien détecté

Ici, le test vérifie explicitement que :

 I’entrée invalide est reconnue,
* aucune valeur incorrecte n’est produite.

Création des tests

La création de tests exhaustifs est souvent une tache répétitive et chronophage. Pour une fonction ou une API
non triviale, il faut généralement couvrir :

* les cas nominaux,

122

« les cas limites,
« les entrées invalides,
* et parfois de nombreuses combinaisons de paramétres.

De plus, lorsque le code évolue (refactorisation, changement d’ API, ajout de paramétres), les tests doivent étre
mis a jour afin de rester cohérents avec le nouveau contrat. Cette phase de maintenance peut représenter une part
importante du temps de développement.

Dans ce contexte, les outils de génération de code assistée par IA peuvent étre utilisés pour accélérer et
faciliter la mise en place de batteries de tests. Ils sont particulierement utiles pour :

+ générer rapidement des tests unitaires systématiques a partir d’une spécification claire,
* proposer des tests de cas limites ou négatifs souvent oubliés,

+ aider a adapter ou régénérer des tests aprés une modification du code,

+ explorer automatiquement différentes combinaisons d’entrées.

8.8 Gestion des erreurs : principes et méthodologie

Un programme robuste ne se contente pas de détecter les erreurs : il doit les classer, les signaler correctement, et
permettre a I’appelant de réagir de maniére appropriée.
La gestion des erreurs fait partie intégrante du design du code et de son APL.

Pourquoi une gestion explicite des erreurs ?
Sans stratégie claire de gestion des erreurs, on obtient :

« des erreurs silencieuses,

* des comportements indéfinis,

* des états internes incohérents,

* des bugs difficiles a reproduire.

Une bonne gestion des erreurs permet :

* de rendre les échecs visibles et compréhensibles,

* de séparer le code nominal du code d’erreur,

* de tester explicitement les comportements invalides,
+ de renforcer le contrat entre appelant et fonction.

Deux grandes catégories d’erreurs

La premiere étape consiste a distinguer la nature de ’erreur.

1. Erreurs de programmation (bugs)

Ce sont des situations qui ne devraient jamais arriver si le code est correctement utilisé.
Exemples :

* violation d’un invariant,

* index hors limites,

* pointeur nul inattendu,

* précondition non respectée.

Ces erreurs indiquent un bug.
Traitement recommandé :

® assert,
® static_assert,
* ou arrét immédiat du programme.

assert(index < data.size() && "index hors limites");

Ces erreurs ne sont généralement pas récupérables.

123

2. Erreurs d’usage ou d’environnement

Ce sont des situations prévisibles, méme si le code est correct.
Exemples :

« fichier absent,

¢ données mal formées,

« entrée utilisateur invalide,

* ressource matérielle indisponible.

Ces erreurs doivent étre signalées a I’appelant.
Traitement recommandé :

* exceptions,
* codes de retour,
* types résultats (optional, expected, Result).

Stratégies de gestion des erreurs en C++

Le choix d’une stratégie dépend :

* du type d’erreur,
* du contexte (bibliothéque, application, temps réel),
* des contraintes de performance et de lisibilité.

1. Exceptions

Les exceptions permettent de séparer clairement le code nominal du code d’erreur.

float parse_float(std::string const& s)
{

return std::stof(s); // peut lever une exception

}

Avantages :

* code nominal lisible,
* propagation automatique de 1’erreur,
« adaptées aux erreurs rares.

Inconvénients :

* cout potentiel (selon contexte),
+ contrdle du flux moins explicite,
« parfois interdites en bas niveau / temps réel.

A utiliser avec discipline, et & documenter clairement.

2. Codes de retour

Approche historique et explicite.

bool read_file(std::string const& name, Data& out);

Avantages :

*+ simple,
* pas d’exception,
* contrdle explicite.

Inconvénients :

« facile a oublier de vérifier,
* peu expressif sans structure associée.

124

3. Types résultats (optional, expected, Result)

Approche moderne et expressive.

std::optional<float> parse_float_safe(std::string const& s);

Ou avec information d’erreur :

std::expected<float, ParseError> parse_float(std::string const& s);

Avantages :
+ rend Derreur explicite dans le type,
+ force I’appelant a la traiter,

* trés testable.

Souvent le meilleur compromis pour les API modernes.

Exemple complet : API robuste avec type résultat

#include <fstream>
#include <optional>
#include <string>
#include <vector>

struct ReadError {
enum class Code { FileNotFound, ParseError };

Code code;
std::string message;
int line = -1;

18

template <typename T>

struct Result {
std::optional<T> value;
std::optional<ReadError> error;

static Result ok(T v) { return {std::move(v), std::nullopt}; }
static Result fail(ReadError e) { return {std::nullopt, std::move(e)}; }

Lecture d’un fichier contenant un flottant par ligne :

Result<std::vector<float>> read_floats(std::string const& filename)
{
std::ifstream file(filename);
if (!file.is_open()) {
return Result<std::vector<float>>::fail(
{ReadError::Code::FileNotFound, "Impossible d'ouvrir le fichier"});

std::vector<float> values;
std::string line;
int line_id = 0;

while (std::getline(file, line)) {
++line_id;
try {
values.push_back(std::stof(line));
} catch (...) {
return Result<std::vector<float>>::fail(
{ReadError::Code::ParseError, "Erreur de parsing", line_id});

return Result<std::vector<float>>::0k(std::move(values));

125

Test minimal :

auto r = read_floats("data.txt");
assert(r.value.has_value() || r.error.has_value());

Lien avec le contrat et les tests

* les assertions vérifient les erreurs de programmation,

* les types résultats / exceptions gérent les erreurs récupérables,
* les tests négatifs vérifient que les erreurs sont bien détectées,

* le contrat documente ce qui reléve de [’un ou de I’autre.

Voici une version enrichie et pédagogique de ta section Bonnes pratiques pour la conception d’API, avec
des exemples concrets “mauvais / meilleur” pour chaque principe, tout en restant cohérente avec le reste de
08-methodology.md.

Tu peux remplacer intégralement ta section actuelle par celle-ci.

8.9 Bonnes pratiques pour la conception d’API

Une API (4pplication Programming Interface) est ’interface de communication entre un morceau de code et ses
utilisateurs (autres fonctions, autres modules, ou autres développeurs). Elle décrit comment utiliser le code, quelles
opérations sont disponibles, quels paramétres sont attendus, et quels résultats ou erreurs peuvent étre produits.

En C++, une API correspond le plus souvent a I’ensemble des déclarations visibles dans les fichiers d’en-
téte (.hpp).

Ces fichiers décrivent ce que le code permet de faire, sans exposer comment il le fait.

Concrétement, une API C++ est constituée de : - fonctions et leurs signatures, - classes et leurs méthodes
publiques, - types (structures, énumérations, alias), - constantes et namespaces exposés.

Lutilisateur de I’API n’a besoin de lire que les fichiers d’en-téte pour comprendre : - comment appeler une
fonction, - quels parametres fournir, - quelles valeurs ou erreurs attendre, - et quelles régles (préconditions) doivent
étre respectées.

Les fichiers source (.cpp) contiennent I’implémentation interne et peuvent évoluer librement tant que I’API,
définie par les en-tétes, reste inchangée.

Ainsi, en C++, concevoir une bonne API revient essentiellement a concevoir de bons fichiers d’en-téte : clairs,
cohérents, et difficiles a mal utiliser.

Objectifs d’une bonne API

Une API bien congue doit étre :

* claire : difficile a mal utiliser,

+ prévisible : comportements cohérents dans des situations similaires,
* documentée par le type : les types expriment les contraintes,

« testable : facile a utiliser dans des tests unitaires,

« stable : les changements ne cassent pas inutilement le code existant.

Rendre les erreurs explicites dans I’API

Une API doit indiquer clairement comment les erreurs sont signalées.

Mauvais exemple (erreur silencieuse)

float normalize(vec3 const& v); // que se passe-t-il si v est nul ?

Ici:

* le contrat est implicite,
+ I’utilisateur peut appeler la fonction sans savoir qu’elle est invalide,
* le comportement en cas d’erreur est ambigu.

126

Exemple avec type résultat explicite

std::optional<vec3> normalize(vec3 const& v);

Utilisation :

auto r = normalize(v);
if ('r) {
// cas invalide : v est nul

}

Lerreur fait partie de I’API : elle ne peut pas étre ignorée accidentellement.

Exemple avec précondition explicite (erreur de programmation)

vec3 normalize(vec3 const& v); // précondition : norm(v) > 0

Ici:

* ’appelant est responsable,
+ la violation est une erreur de programmation,
* elle peut étre détectée via assert.

Choisir explicitement si I’erreur est récupérable ou non.

Préférer des types expressifs

Les types doivent porter le sens, pas seulement les valeurs.

A éviter : paramétres ambigus

void load(int mode); // que signifie mode ?

L’ API permet des valeurs invalides (mode = 42).

Préférer : types forts et explicites

enum class LoadMode { Fast, Safe };
void load(LoadMode mode);

Utilisation :

load(LoadMode: :Fast);

Avantages :

+ impossible de passer une valeur invalide,
* I’intention est claire,
* les erreurs sont détectées a la compilation.

Autre exemple : bool ambigu vs type dédié

void draw(bool wireframe); // que signifie true ?

Meilleur design :

enum class RenderMode { Solid, Wireframe };
void draw(RenderMode mode);

127

Limiter les états invalides

Une bonne API rend les états invalides impossibles ou difficiles a représenter.

Exemple problématique : état partiellement valide

struct Image {
unsigned charx data;
int width;
int height;

i

Ici, rien n’empéche :
* data == nullptr,

* width <= o,
* incohérences internes.

Meilleur exemple : invariant établi par le constructeur

class Image {
public:
Image(int w, int h)
: width(w), height(h), data(wsxhx4)
{
assert(w > 0 && h > 0);
}

unsigned charx pixels() { return data.data(); }

private:
int width, height;
std::vector<unsigned char> data;

18

Avantages :
* I’objet est toujours valide aprés construction,

« les invariants sont centralisés,
* T'utilisateur ne peut pas créer un état incohérent.

Séparer interface et implémentation

L’ API doit exposer ce que fait le code, pas comment il le fait.

Header (.hpp) : interface

// image.hpp
class Image {
public:
Image(int w, int h);
void clear();
void save(const std::string& filename) const;
+

Source (.cpp) : implémentation

// image.cpp
#include "image.hpp"

void Image::clear()

128

// détails internes invisibles pour l'utilisateur

Avantages :
* liberté de changer I’implémentation,

+ compilation plus rapide,
* API plus stable.

Eviter les effets de bord cachés

Une fonction ne doit pas modifier des états globaux de maniére inattendue.

Mauvais exemple

void render()
{
global_state.counter++; // effet de bord caché

¥

Meilleur exemple

void render(RenderContext& ctx)
{
ctx.counter++;

b

Les dépendances sont explicites et testables.

Reégles pratiques de conception d’API

* documenter clairement les préconditions et postconditions,

« rendre les erreurs visibles dans le type ou le comportement,

« ¢viter les parametres ambigus (bool, int non documentes),

« préférer des fonctions petites et orthogonales,

« tester I’API comme si on était un utilisateur externe,

* considérer que 1I’API est plus difficile & modifier que I’implémentation.

Idée clé a retenir

Une bonne API empéche les erreurs avant méme I’exécution du programme.

Elle guide I'utilisateur vers le bon usage, rend les erreurs explicites, et facilite les tests, la maintenance et
1’évolution du code.

129

	Introduction au C++
	Préambule
	Premier programme en C++
	Déclaration de variables
	Affichage et lecture formatés : printf, scanf
	Conteneurs d'éléments contigus, tableaux
	Conditionnelles et boucles
	Conteneurs associatifs : std::map
	Durée de vie des variables
	Fonctions
	Passage d'arguments: copie, référence
	Classes
	Écriture/lecture de fichiers externes
	Organisation des fichiers de code
	Compilation

	Types fondamentaux, encodage
	Encodage des entiers
	Encodage des nombres flottants
	Notion d'endianness
	Synthèse des types fondamentaux
	Obtenir la taille avec sizeof
	Remarques importantes
	Types à tailles spécifiques
	Opérations bit à bit
	Résumé

	Pointeurs
	Notion de stockage et d'adressage en mémoire
	Adresse d'une variable
	Passage d'argument
	Cas des tableaux contigus
	Contiguité dans les classes et struct
	Organisation mémoire AoS vs SoA
	Allocation et désallocation mémoire
	La copie memoire: memcpy
	Le pointeur générique void*
	Références
	Allocation dynamique

	Classes
	Introduction
	Initialization, constructeurs
	Opérateurs
	Héritage
	Polymorphisme
	Gestion d'accès : const
	Mot clé : static
	Gestion d'accès : le mot-clé static dans les classes
	Espaces de noms (namespace)

	Threads et parallélisme
	Notion de thread
	Création d'un thread en C++
	Exemple d'exécution parallèle
	Passage d'arguments aux threads
	Threads multiples et parallélisme réel
	Mémoire partagée
	Synchronisation et sections critiques
	Variables atomiques

	Programmation générique, template
	Principe général des templates
	Principes de compilation: duck typing, instanciation et fichiers d'en-tête
	Meta-programmation statique
	Déduction de types dans les templates
	Spécialisation des templates
	Priorité entre spécialisation et surcharge
	Alias

	Vue matérielle
	Principe du transistor
	Structure de base de la mémoire et des opérations arithmétiques
	Organisation minimale : stocker un bit
	Notion de cache mémoire

	Méthodologies de développement et bonnes pratiques
	Qualité de code : objectifs concrets
	Principes généraux : KISS, DRY, YAGNI
	Invariants, assertions et contrat de fonction
	Tests et Test-Driven Development (TDD)
	Exemple guidé : tests unitaires pour clamp
	Test-Driven Development (TDD)
	Exemple TDD : normalisation d'un vecteur 3D
	Gestion des erreurs : principes et méthodologie
	Bonnes pratiques pour la conception d'API

