Introduction au C++

1/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html

Intérét du C

Performance : compilation native, optimisations fines, acces direct au matériel.

Contrdole mémoire : allocation explicite, mais options modernes (smart pointers)réduisent les erreurs.
Polyvalence : supporte paradigmes procédural, orienté-objet, générique et fonctionnel.
Ecosystéme : bibliotheques matures pour 2D /3D, calcul scientifique, GPU et systémes.

Domaines d'application
Moteurs de jeu, rendu 3D
Simulations et calcul scientifique
Logiciels embarqués et systemes
Bibliotheques hautes performances (vision, DL)
La norme C++ a évolué régulierement pour améliorer le langage et la bibliotheque standard.
C++98 / C++03 : normalisation initiale du langage et de la bibliotheque.
C++11 : « C++ moderne » — auto, lambdas, pointeurs intelligents (std: :unique_ptr,
std: :shared_ptr), boucles étendues.
C++14 / C++17 : améliorations syntaxiques et bibliotheques (f1lesystem, structured bindings, parallélisme
partiel).
C++20 : concepts, coroutines, ranges — étapes importantes vers une programmation plus expressive.

C++23 : peaufinage des bibliotheques et simplifications d'usage. 2/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/00_title/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/00_title/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html

Premier programme C

// bibliotheque standard pour les entrées/sorties
#include <iostream>

int main() {
// affichage d'un message sur la ligne de commande
std::cout << "Hello, world!" << std::endl;

// fin du programme
return 0;

-#1include :inclusion de la bibliotheque standard pour les entrées/sorties.
-int main() { ... }:pointd'entrée du programme.

-std::cout << ...:affichage du texte "Hello, world!" + retour a la ligne.
- return 0;:indique que le programme s'est terminé correctement.

- Chaque instruction se termine par un point-virgule ;.

- Commentaires: // ou /* ... */ pour expliquer le code.

- Indentation, saut de lignes: uniquement pour la lisibilité.

3/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html

Compilation d'un programme C

Le code C++ doit étre compilé
Compilation = traduction du code source en code machine exécutable par I'ordinateur.
Code exécutable = fichier pouvant étre lancé directement par le systeme d'exploitation.

Rem. Différence avec Python
- Python = code source interprété a la volée par un programme.
Nécessite I'exécution via un interpréteur (ex: python mon_programme.py).
- C++ = code source compilé en code machine avant exécution.
Une fois compilé : le programme s’exécute directement par le systeme d’exploitation/CPU.

Sous Linux/MacOS, compilation via le compilateur g++ ou ¢ lang.

g++ mon_programme.cpp —O0 mon_programme

mon_programme.cpp: fichier source C++ a compiler.
-0 mon_programme: option pour nommer le fichier exécutable généré

Exécution:
Sous Linux/MacOS: . /mon_programme

Sous Windows: mon_programme. exe
4/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html

Cas spéciaux

Variable = espace mémoire nommé pour stocker une valeur. Types fondamentaux courants en C++ :
int: entier (ex: 42, -7)
f loat: nombre a virgule simple précision (ex: 3.14f, -0.01f)
doub le: nombre a virgule double précision (ex: 3.1415926535, -0.0001)
char: caractere (ex: 'a’, 'Z', '0'")
boo L: booléen (valeurs: true ou false)

#include <iostream>
#include <string>
int main() {
int age = 20; // entier
float taille = 1.75f; // nombre a virgule (simple précision)
double pi = 3.14159; // nombre a virgule (double précision)
std::string nom = "Alice"; // chailne de caracteres
std::cout << "Nom : " << nom << std::endl;
std::cout << "Age : " << age << std::endl;
std::cout << "Taille : " << taille << " m" << std::endl;
std::cout << "Valeur de pi : " << pi << std::endl;
return 0;
by

5/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html

Variables : Cas spéciaux

Division entiere
Lorsqu'on divise deux entiers, le résultat est tronqué (division euclidienne)

inta=5/2; // vaut 2
int b =5%2; // vaut 1 (reste)

Pour obtenir un résultat décimal, au moins un opérande doit étre flottant

float ¢ = 5 / 2.0f; // 2.5
float d = 5.0f / 2; // 2.5
float e = float(5) / 23 // 2.5

Mot-clé auto
Le mot-clé auto permet au compilateur de déduire le type d'une variable a partir de l'initialisation.

auto a = 5; // int
auto b = 8.4f; // float
auto c = 4.2; // double

Utile pour les types complexes. Mais: Préférez les types explicites pour les types simples.

6/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html

Variables: Cas spéciaux

Variables non initialisées
Variables fondamentales non initialisées par défaut
Valeur indéfinie avant leur affectation.

int a; // contient une valeur indéfinie
// Utiliser 'a' avant affectation => comportement indéfini

Bonne pratique : toujours initialiser les variables. | int a = o;

Variables constantes
Une variable const doit étre initialisée lors de sa déclaration et ne peut plus étre modifiée ensuite.

const float pi = 3.14159f;
// pl = 3.14f; // ERREUR : impossible de modifier une constante

Avantages :
Sécurité : protege contre les modifications accidentelles.
Lisibilité : exprime l'intention.
Optimisation : le compilateur peut effectuer des optimisations.

7/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html

| Affichage/lecture formatés : printf et scanf

Affichage formaté via les fonctions C : printf et scanf

(en plus de std::cout et std::cin)

#include <cstdio>

int main() {
int age = 20;
float taille = 1.75f;

// affichage formaté
printf("Age : %d ans, taille

// lecture formatée
int x;
printf("Entrez un entier : ");
if (scanf("%d", &x) == 1) {
printf("Vous avez entré

}

return 0;

. %.2f m\n", age, taille);

: %d\n", x);

- Affichage via spécificateurs de format (%d, %T, %5, ...)

8/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html

Conteneurs contigus: Tableaux C classiques

Les tableaux C (T NomTableau[N])

Elements stockés dans zone mémoire appelée pile (stack).

int tab[5] = {10, 20, 30, 40, 50};
// Indices de 0 a N-1
for (int i = 0; 1 < 5; i++) {

}

std::cout << "tab[" << 4 << "] = " << tab[i] << std::endl;

Présentent des limitations et pieges :

Taille fixe, devant étre connue a la compilation.
Pas de mise en mémoire de la taille du tableau.

Conversion automatique en pointeur

void afficher(intx arr) {
// Impossible de connaitre la taille ici !
std::cout << "sizeof(arr) = " << sizeof(arr) << std::endl;
// Taille du pointeur (8 octets)

int main() {
int tab[5] = {1, 2, 3, 4, 5};
std::cout << "sizeof(tab) = " << sizeof(tab) << std::endl;
// 5 * sizeof(int) = 20 octets
afficher(tab);
// Conversion implicite en intx*
return 0;

9/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html

Conteneurs contigus : std::array

std::array<T,N> conteneur a taille fixe. Interface et sécurité d'un conteneur STL.
Inclusion : #include <array>

Taille connue a la compilation : utile pour des petites tailles et lorsque la taille est fixe.
Méthodes : size(), begin()/end(), fill(), at().

std::array<int,3> a = {1,2,3}; // La taille est conservée lors du passage en argument
for (auto &x : a) void afficher(const std::array<int,3>& arr) {
std::icout << x << " Uy std::cout << "size=" << arr.size() << std::endl;
std::cout << "\nsize=" << a.size() << std::endl; for (const auto& x : arr)
a.fill(0); std::cout << x << " "y
}

int main() {
std::array<int,3> a = {10, 20, 30};
afficher(a); // size=3

Avantages : interface stire (méthodes STL), pas de conversion implicite en pointeur comme les tableaux C.

10/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html

Conteneurs contigus : std::vector

std::vector tableau dynamique : sa taille peut croftre a 1'exécution.

Classe template std::vector<T> pour un vecteur d'éléments de type T.

Ajout en fin de tableau : .push_back(val)

Opérations principales : push_back(), size(), clear(), resize().
Acces via v[i] ou .at(i) (sécurisé en cas de dépassement de taille).
Elements stockés dans zone mémoire appelée tas (heap).

#include <vector>
#include <iostream>

int main() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
for (auto x : v)
std::cout << x << " 'y
std::cout << "\nsize=" << v.size() << std::endl;
return 0;

11/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html

Conditionnelles et boucles

Structure générale :

if (condition) {

// instructions si vrai Comparaison:
} else if (autre_condition) {

} else {
// instructions par défaut

}

Boucle while : répete tant que la condition est vraie

Boucle for : initialisation, condition, incrément

Boucle for étendue (C++11)

{} optionnelles si une seule instruction. | i,¢ note - 15;

== | = = >S=
s - ’<’>’<’> if (note >= 16)

// instructions si autre_condition vraie Logiques : && (et), | | (OU), I (HOH) std::cout <<

else if (note >=
std::cout <<
else
std::cout <<

"Trés bien !";
10)
"Suffisant.";

"Echec.";

int 1 = 03

while (i < 5) {
std::cout << 7 << " "y
i+t

for (int i = 0; i < 5; i++) {
std::cout << 1 << " "y

}

std::vector<int> v = {1, 2, 3, 4, 5};
for (int x : v)

std::cout << x << " "y
// Avec référence (modifie le vecteur)
for (int& x : v)

X *= 2

12/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html

Conteneur associatif: std::map

std::map dictionnaire de paires clé/valeur triées par clé
Tri automatique via l'ordre défini par 'opérateur '<
Inclusion : #include <map>
Recherche en O(log n).

std: :map<std::string, int> counts;

// Insertion / incrémentation
counts["pomme"] = 5;
counts["banane'] 4;
counts["avocat"] = 8;
counts["pomme"]++;

// Parcours et affichage
for (auto pair : counts) {
std::cout << pair.first << " : " << pair.second << std::endl;

}

// Suppression
counts.erase("banane'");

std::map<std::string, int> - Arbre binaire (Red-Black Tree)

"banane"

4

gauche

droite

n Pome n
3

"avocat" < "banane" < "pomme" .Clé C]valeur

"avocat"
8

13/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html

Durée de vie des variables

Durée de vie (scope) déterminée par le bloc d'instructions dans lequel elle est déclarée.

Un bloc est défini par des accolades { ... }.

Variable existe depuis sa déclaration jusqu'a 1'accolade fermante } du bloc.

if (true) {
int x = 5; // x est défini dans le bloc "if"
std::cout << x << std::endl;

}

// Ici, x n'existe plus : i1l est détruit a la fin du bloc

int x = 5; // x est défini dans le bloc de la fonction main()
if (true) {

std::cout << x << std::endl; // x peut étre utilisé dans ce sous-bloc

}

// X existe toujours jusqu'a la fin de main()

Possibilité de déclarer un variable du méme nom dans un sous-bloc:

int x = 5;

{
int x = 10; // autorisé mais a éviter, car peu lisible
std::cout << x << std::endl; // affiche 10

}
std::cout << x << std::endl; // affiche 5

14/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html

Fonctions

typeRetour nomFonction(type nomArgumentl, type nomArgument2, ...)

{

// corps de la fonction
return valeur;

On appelle:
Signature d'une fonction = nom + types des arguments + type de retour
Corps de la fonction = ensemble des instructions entre les accolades { ... }
Pas retour: type 'void'

La signature d'une fonction doit toujours étre déclarée avant son utilisation.

int addition(int a, int b); // Déclaration

int main()

{
int ¢ = addition(5, 3); // OK
}
int addition(int a, int b) // Définition
{
return a + b;
}

15/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html

Fonctions: Surcharge

Possibilité de "surcharger" une fonction
= Plusieurs fonctions avec le méme nom, mais arguments différents.

// ax + b =0
float solve(float a, float b) {
return -b / a;

}

// ax"2 + bx + ¢ = 0 (une racine)
float solve(float a, float b, float c) {
float delta = bxb - 4x*axc;
return (-b + std::sqrt(delta)) / (2*a);
}

int main() {

float x = solve(l.0f, 2.0f); // Appelle la lére version
float y = solve(1.0f, 2.0f, 1.0f); // Appelle la 2eme version

std::cout << "Solution linéaire : " << x << std::endl;
std::cout << "Solution quadratique : " << y << std::endl;

16/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html

Passage d'arguments : par copie

Les arguments des fonctions ont la valeur copiée du parametre.

On parle de "passage par copie" ou "passage par valeur" ("pass by value")
[+] Les modifications restent locales a la fonction

[-] Pour les gros objets, la copie peut étre cotliteuse

}

void increment(int a) {

a =a+ 1;

int main() {

int x = 3;
increment(x);
std::cout << x << std

::endl; // affiche 3

void multiply(std::vector<float> vec, float s) {
for (int k = 0; k < vec.size(); ++k)
vec[k] *= s;
// Modifie la copie locale
b

int main() {
std::vector<float> v = {1, 2, 3};
multiply(v, 2.0f);
// v est inchangé : {1, 2, 3}

17/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html

Passage d'arguments : par référence

En C++, le symbole & permet de passer par référence (acces direct, pas de copie)
Permet de modifier I'argument d'origine

Evite la copie pour les gros objets

void increment(int& a) { a = a + 1; }

int main() {
int x = 3;
increment(x) ;
std::cout << x; // affiche 4

Dans le cas o1 on souhaite éviter le cout de la copie sans modifier I'argument: Référence constante (const&)

float sum(std::vector<float> const& v) {
float s = 0.0 ;
for (int k = 0; k < v.size(); k++) s += v[k];
return s;

Bonne pratique : utiliser const& pour les gros objets non modifiés.

Rem. const T& arg, ou T const& arg : méme signification.

18/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html

Classes : principes

Une classe (ou struct) regroupe : struct vec3 {

des attributs (données membres) }s
des méthodes (fonctions membres)

Un objet est une instance de la classe.

float x, y, z; // attributs

int main() {

vec3 pl; // non initialisé
vec3 p2 = {1.0f, 2.0f, 5.0f}; // initialisé

p2.y = -4.0°; // modification
std::icout << p2.x << """ << p2.y << "M LKL p2.2z;

Rem. Deux mots clés class et struct pour définir une classe.

Comportement similaire.
Par défaut, les membres d'une struct sont publics.
Par défaut, les membres d'une class sont privés.

struct vec3 {
float x, y, z; // public par défaut
T3

class vec3 {
public:
float x, y, z; // explicite
Ts

19/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html

Classes : méthodes

Une classe peut définir des méthodes qui manipulent ses attributs.

struct vec3 {
float x, y, z;

float norm() const; // déclaration
void normalize();

s

// Implémentation
float vec3::norm() const {
return std::sqrt(x*x + y*xy + z*xz);

}

void vec3::normalize() {
float n = norm();

X /=nyy /=n; z /= n;

int main() {
vec3 p = {1.0f, 2.0f, 5.0f};

std::cout << p.norm(); // appel méthode

p.normalize();

const apres méthode : ne modifie pas 1'objet
Syntaxe implémentation : Classe::methode()

20/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html

Classes : constructeurs et destructeur

Constructeur : initialise l'objet a sa création

Destructeur : exécuté a la destruction de l'objet

En général: rien a faire sur des objets simples

struct vec3 {
float x, y, z;

vec3();
vec3(float v);
~vec3();

s

// constructeur par défaut
// constructeur personnalisé

// destructeur

vec3::vec3() : x(0), y(0), z(0) { }

vec3::vec3(float v)

Pox(v), y(v), z(v) { }

vec3::~vec3() { std::cout << "Goodbye"; }

int main() {

vec3 a; // appelle vec3()

vec3 b(1.0f); // appelle vec3(float)
} // appelle ~vec3() pour a et b

= default : génere I'implémentation automatique

struct vec3 {
float x, y, z;
vec3() = default;
~vec3() = default;

s

21/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html

Fonctions membres vs fonctions externes

Le choix entre méthode et fonction externe est libre.

// Fonction membre (méthode)
struct vec3 {
float x, y, z;
float norm() const {
return std::sqrt(x*x + y*y + z*xz);
}
s

vec3 p = {1, 2, 3};
float n = p.norm(); // appel via objet

// Fonction externe (non-membre)
struct vec3 {
float x, y, z;

s

float norm(const vec3& p) {

return std::sqrt(p.x*p.x + p.y*p.y + p.z*p.z);

}

vec3 p = {1, 2, 3};

float n = norm(p); // appel comme fonction

22 /25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html

Lecture/écriture de fichiers

Bibliotheque <fstream> pour manipuler des fichiers :

std::1ifstream: lecture (input)
std: :ofstream: écriture (output)

#include <fstream>

// Ecriture

std::ofstream file('"data.txt");

if (file.dis_open()) {
file << "Hello" << std::endl;
file << 1.5f << " " << 2.0f << std::endl;
file.close();

Modes file("data.txt", mode) :
std::io0s::app (ajout)
std::10s::binary (binaire)

#include <fstream>

// Lecture

std::ifstream file('"data.txt");

if (file) {
std::string line;
std::getline(file, line); // Llit une ligne
float x, y;
file >> x >> y; // lit valeurs
file.close();

23/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html

Organisation du code

Trois types de fichiers :

. hpp Déclarations, signatures de fonctions partagés avec d'autres fichiers
. Cpp Implémentation des fonctions et classes décrites dans .hpp

main.cpp Point d'entrée du programme, utilisation des fonctions et classes

// vec3.hpp // vec3.cpp // main.cpp
#pragma once #include "vec3. hpp" #include "vec3.hpp"
struct vec3 { #include <cmath> int main() {
float x, y, z; float vec3::norm() const { vec3 v = {1, 2, 3};
float norm() const; return std::sqrt(xxx+yxy+z*z); std::cout << v.norm();
s } by

#pragma once : évite les inclusions multiples
#include "file.hpp" : copie-colle le contenu du fichier

24 /25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/15_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/15_compilation/index.html

Compilation

Compilation : . cpp — compilateur — .0 — linker — exécutable

Un seul fichier
g++ main.cpp -0 programme

Plusieurs fichiers

g++ —-Cc main.cpp # main.o
g++ —-c vec3.cpp # vec3.o
g++ main.o vec3.0 -0 prog

CMake : génere Makefile (Linux) ou projet VS (Windows)

mkdir build && cd build
cmake ..

make # Linux/MacOS

Linux/MacOS : g++ ou clang++
Windows : Visual Studio (MSVC)

25/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html

