
Introduction au C++

 1/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html

Intérêt du C++
Performance : compilation native, optimisations fines, accès direct au matériel.
Contrôle mémoire : allocation explicite, mais options modernes (smart pointers) réduisent les erreurs.
Polyvalence : supporte paradigmes procédural, orienté‑objet, générique et fonctionnel.
Écosystème : bibliothèques matures pour 2D/3D, calcul scientifique, GPU et systèmes.

Domaines d'application
Moteurs de jeu, rendu 3D
Simulations et calcul scientifique
Logiciels embarqués et systèmes
Bibliothèques hautes performances (vision, DL)

La norme C++ a évolué régulièrement pour améliorer le langage et la bibliothèque standard.
C++98 / C++03 : normalisation initiale du langage et de la bibliothèque.
C++11 : « C++ moderne » — auto, lambdas, pointeurs intelligents (std::unique_ptr,
std::shared_ptr), boucles étendues.
C++14 / C++17 : améliorations syntaxiques et bibliothèques (filesystem, structured bindings, parallélisme
partiel).
C++20 : concepts, coroutines, ranges — étapes importantes vers une programmation plus expressive.
C++23 : peaufinage des bibliothèques et simplifications d'usage. 2/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/00_title/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/00_title/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html

Premier programme C++
// bibliothèque standard pour les entrées/sorties
#include <iostream>

int main() {
 // affichage d'un message sur la ligne de commande
 std::cout << "Hello, world!" << std::endl;

 // fin du programme
 return 0;
}

- #include : inclusion de la bibliothèque standard pour les entrées/sorties.
- int main() { ... }: point d'entrée du programme.
- std::cout << ...: affichage du texte "Hello, world!" + retour à la ligne.
- return 0;: indique que le programme s'est terminé correctement.
- Chaque instruction se termine par un point-virgule ;.
- Commentaires: // ou /* ... */ pour expliquer le code.
- Indentation, saut de lignes: uniquement pour la lisibilité.

 3/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/01_interet_cpp/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html

Compilation d'un programme C++
Le code C++ doit être compilé

Compilation = traduction du code source en code machine exécutable par l'ordinateur.
Code exécutable = fichier pouvant être lancé directement par le système d'exploitation.

Rem. Différence avec Python
- Python = code source interprété à la volée par un programme.

Nécessite l'exécution via un interpréteur (ex: python mon_programme.py).
- C++ = code source compilé en code machine avant exécution.

Une fois compilé : le programme s'exécute directement par le système d'exploitation/CPU.

Sous Linux/MacOS, compilation via le compilateur g++ ou clang.
g++ mon_programme.cpp -o mon_programme

mon_programme.cpp: fichier source C++ à compiler.
-o mon_programme: option pour nommer le fichier exécutable généré

Exécution:
Sous Linux/MacOS: ./mon_programme
Sous Windows: mon_programme.exe

 4/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/02_premier_programme/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html

Cas spéciaux
Variable = espace mémoire nommé pour stocker une valeur. Types fondamentaux courants en C++ :
int: entier (ex: 42, -7)
float: nombre à virgule simple précision (ex: 3.14f, -0.01f)
double: nombre à virgule double précision (ex: 3.1415926535, -0.0001)
char: caractère (ex: 'a', 'Z', '0')
bool: booléen (valeurs: true ou false)

#include <iostream>
#include <string>

int main() {
 int age = 20; // entier
 float taille = 1.75f; // nombre à virgule (simple précision)
 double pi = 3.14159; // nombre à virgule (double précision)
 std::string nom = "Alice"; // chaîne de caractères

 std::cout << "Nom : " << nom << std::endl;
 std::cout << "Âge : " << age << std::endl;
 std::cout << "Taille : " << taille << " m" << std::endl;
 std::cout << "Valeur de pi : " << pi << std::endl;

 return 0;
}

 5/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/03_premiere_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html

Variables : Cas spéciaux
Division entière
Lorsqu'on divise deux entiers, le résultat est tronqué (division euclidienne)
int a = 5 / 2; // vaut 2
int b = 5 % 2; // vaut 1 (reste)

Pour obtenir un résultat décimal, au moins un opérande doit être flottant
float c = 5 / 2.0f; // 2.5
float d = 5.0f / 2; // 2.5
float e = float(5) / 2; // 2.5

Mot-clé auto
Le mot-clé auto permet au compilateur de déduire le type d'une variable à partir de l'initialisation.
auto a = 5; // int
auto b = 8.4f; // float
auto c = 4.2; // double

Utile pour les types complexes. Mais: Préférez les types explicites pour les types simples.

 6/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/a_introduction/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html

Variables: Cas spéciaux
Variables non initialisées
Variables fondamentales non initialisées par défaut

Valeur indéfinie avant leur affectation.
int a; // contient une valeur indéfinie
// Utiliser 'a' avant affectation => comportement indéfini

Bonne pratique : toujours initialiser les variables. int a = 0;

Variables constantes
Une variable const doit être initialisée lors de sa déclaration et ne peut plus être modifiée ensuite.
const float pi = 3.14159f;
// pi = 3.14f; // ERREUR : impossible de modifier une constante

Avantages :
Sécurité : protège contre les modifications accidentelles.
Lisibilité : exprime l'intention.
Optimisation : le compilateur peut effectuer des optimisations.

 7/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/b_special_case/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html

Affichage/lecture formatés : printf et scanf
Affichage formaté via les fonctions C : printf et scanf

(en plus de std::cout et std::cin)

#include <cstdio>

int main() {
 int age = 20;
 float taille = 1.75f;

 // affichage formaté
 printf("Age : %d ans, taille : %.2f m\n", age, taille);

 // lecture formatée
 int x;
 printf("Entrez un entier : ");
 if (scanf("%d", &x) == 1) {
 printf("Vous avez entré : %d\n", x);
 }
 return 0;
}

- Affichage via spécificateurs de format (%d, %f, %s, ...)

 8/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/04_variables/c_special_case_2/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html

Conteneurs contigus: Tableaux C classiques
Les tableaux C (T NomTableau[N])

Elements stockés dans zone mémoire appelée pile (stack).
int tab[5] = {10, 20, 30, 40, 50};
// Indices de 0 à N-1
for (int i = 0; i < 5; i++) {
 std::cout << "tab[" << i << "] = " << tab[i] << std::endl;
}

Présentent des limitations et pièges :
Taille fixe, devant être connue à la compilation.
Pas de mise en mémoire de la taille du tableau.
Conversion automatique en pointeur

 9/25

void afficher(int* arr) {
 // Impossible de connaître la taille ici !
 std::cout << "sizeof(arr) = " << sizeof(arr) << std::endl;
 // Taille du pointeur (8 octets)
}

int main() {
 int tab[5] = {1, 2, 3, 4, 5};
 std::cout << "sizeof(tab) = " << sizeof(tab) << std::endl;
 // 5 * sizeof(int) = 20 octets
 afficher(tab);
 // Conversion implicite en int*
 return 0;
}

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/05_printf/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html

Conteneurs contigus : std::array
std::array<T,N> conteneur à taille fixe. Interface et sécurité d'un conteneur STL.

Inclusion : #include <array>
Taille connue à la compilation : utile pour des petites tailles et lorsque la taille est fixe.
Méthodes : size(), begin()/end(), fill(), at().

std::array<int,3> a = {1,2,3};
for (auto &x : a)
 std::cout << x << " ";
std::cout << "\nsize=" << a.size() << std::endl;
a.fill(0);

Avantages : interface sûre (méthodes STL), pas de conversion implicite en pointeur comme les tableaux C.

 10/25

// La taille est conservée lors du passage en argument
void afficher(const std::array<int,3>& arr) {
 std::cout << "size=" << arr.size() << std::endl;
 for (const auto& x : arr)
 std::cout << x << " ";
}

int main() {
 std::array<int,3> a = {10, 20, 30};
 afficher(a); // size=3
}

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/01_c_arrays/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html

Conteneurs contigus : std::vector
std::vector tableau dynamique : sa taille peut croître à l'exécution.

Classe template std::vector<T> pour un vecteur d'éléments de type T.
Ajout en fin de tableau : .push_back(val)
Opérations principales : push_back(), size(), clear(), resize().
Accès via v[i] ou .at(i) (sécurisé en cas de dépassement de taille).
Elements stockés dans zone mémoire appelée tas (heap).

#include <vector>
#include <iostream>

int main() {
 std::vector<int> v;
 v.push_back(1);
 v.push_back(2);
 for (auto x : v)
 std::cout << x << " ";
 std::cout << "\nsize=" << v.size() << std::endl;
 return 0;
}

 11/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/02_array/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html

Conditionnelles et boucles
Structure générale :
if (condition) {
 // instructions si vrai
} else if (autre_condition) {
 // instructions si autre_condition vraie
} else {
 // instructions par défaut
}

{} optionnelles si une seule instruction.
Comparaison : ==, !=, <, >, <=, >=
Logiques : && (et), || (ou), ! (non)

Boucle while : répète tant que la condition est vraie

Boucle for : initialisation, condition, incrément

Boucle for étendue (C++11)

 12/25

int note = 15;

if (note >= 16)
 std::cout << "Très bien !";
else if (note >= 10)
 std::cout << "Suffisant.";
else
 std::cout << "Échec.";

int i = 0;
while (i < 5) {
 std::cout << i << " ";
 i++;
}

for (int i = 0; i < 5; i++) {
 std::cout << i << " ";
}

std::vector<int> v = {1, 2, 3, 4, 5};
for (int x : v)
 std::cout << x << " ";
// Avec référence (modifie le vecteur)
for (int& x : v)
 x *= 2;

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/06_conteneur/03_vector/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html

Conteneur associatif: std::map
std::map dictionnaire de paires clé/valeur triées par clé

Tri automatique via l'ordre défini par l'opérateur '<'
Inclusion : #include <map>
Recherche en O(log n).

std::map<std::string, int> counts;

// Insertion / incrémentation
counts["pomme"] = 5;
counts["banane"] = 4;
counts["avocat"] = 8;
counts["pomme"]++;

// Parcours et affichage
for (auto pair : counts) {
 std::cout << pair.first << " : " << pair.second << std::endl;
}

// Suppression
counts.erase("banane");

 13/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/07_conditionel/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html

Durée de vie des variables
Durée de vie (scope) déterminée par le bloc d'instructions dans lequel elle est déclarée.

Un bloc est défini par des accolades { ... }.
Variable existe depuis sa déclaration jusqu'à l'accolade fermante } du bloc.

if (true) {
 int x = 5; // x est défini dans le bloc "if"
 std::cout << x << std::endl;
}
// Ici, x n'existe plus : il est détruit à la fin du bloc

 int x = 5; // x est défini dans le bloc de la fonction main()
if (true) {
 std::cout << x << std::endl; // x peut être utilisé dans ce sous-bloc
}
// x existe toujours jusqu'à la fin de main()

Possibilité de déclarer un variable du même nom dans un sous-bloc :
int x = 5;
{
 int x = 10; // autorisé mais à éviter, car peu lisible
 std::cout << x << std::endl; // affiche 10
}
std::cout << x << std::endl; // affiche 5

 14/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/08_map/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html

Fonctions
typeRetour nomFonction(type nomArgument1, type nomArgument2, ...)
{
 // corps de la fonction
 return valeur;
}

On appelle:
Signature d'une fonction = nom + types des arguments + type de retour
Corps de la fonction = ensemble des instructions entre les accolades { ... }
Pas retour: type 'void'

La signature d'une fonction doit toujours être déclarée avant son utilisation.

int addition(int a, int b); // Déclaration

int main()
{
 int c = addition(5, 3); // OK
}

int addition(int a, int b) // Définition
{
 return a + b;
} 15/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/09_lifetime/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html

Fonctions: Surcharge
Possibilité de "surcharger" une fonction

= Plusieurs fonctions avec le même nom, mais arguments différents.
// ax + b = 0
float solve(float a, float b) {
 return -b / a;
}

// ax^2 + bx + c = 0 (une racine)
float solve(float a, float b, float c) {
 float delta = b*b - 4*a*c;
 return (-b + std::sqrt(delta)) / (2*a);
}

int main() {
 float x = solve(1.0f, 2.0f); // Appelle la 1ère version
 float y = solve(1.0f, 2.0f, 1.0f); // Appelle la 2ème version

 std::cout << "Solution linéaire : " << x << std::endl;
 std::cout << "Solution quadratique : " << y << std::endl;
}

 16/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/a_principe/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html

Passage d'arguments : par copie
Les arguments des fonctions ont la valeur copiée du paramètre.

On parle de "passage par copie" ou "passage par valeur" ("pass by value")
[+] Les modifications restent locales à la fonction
[-] Pour les gros objets, la copie peut être coûteuse

void increment(int a) {
 a = a + 1;
}

int main() {
 int x = 3;
 increment(x);
 std::cout << x << std::endl; // affiche 3
}

 void multiply(std::vector<float> vec, float s) {
 for (int k = 0; k < vec.size(); ++k)
 vec[k] *= s;
 // Modifie la copie locale
}

int main() {
 std::vector<float> v = {1, 2, 3};
 multiply(v, 2.0f);
 // v est inchangé : {1, 2, 3}
}

 17/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/10_fonctions/b_surcharge/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html

Passage d'arguments : par référence
En C++, le symbole & permet de passer par référence (accès direct, pas de copie)

Permet de modifier l'argument d'origine
Évite la copie pour les gros objets

void increment(int& a) { a = a + 1; }

int main() {
 int x = 3;
 increment(x);
 std::cout << x; // affiche 4
}

Dans le cas où on souhaite éviter le cout de la copie sans modifier l'argument: Référence constante (const&)
float sum(std::vector<float> const& v) {
 float s = 0.0f;
 for (int k = 0; k < v.size(); k++) s += v[k];
 return s;
}

Bonne pratique : utiliser const& pour les gros objets non modifiés.

Rem. const T& arg, ou T const& arg : même signification.
 18/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/01_copie/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html

Classes : principes
Une classe (ou struct) regroupe :

des attributs (données membres)
des méthodes (fonctions membres)

Un objet est une instance de la classe.

Rem. Deux mots clés class et struct pour définir une classe.
Comportement similaire.
Par défaut, les membres d'une struct sont publics.
Par défaut, les membres d'une class sont privés.

 19/25

struct vec3 {
 float x, y, z; // attributs
};

int main() {
 vec3 p1; // non initialisé
 vec3 p2 = {1.0f, 2.0f, 5.0f}; // initialisé

 p2.y = -4.0f; // modification
 std::cout << p2.x << "," << p2.y << "," << p2.z;
}

struct vec3 {
 float x, y, z; // public par défaut
};

class vec3 {
 public:
 float x, y, z; // explicite
};

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/11_passage_arguments/02_reference/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html

Classes : méthodes
Une classe peut définir des méthodes qui manipulent ses attributs.

struct vec3 {
 float x, y, z;

 float norm() const; // déclaration
 void normalize();
};

// Implémentation
float vec3::norm() const {
 return std::sqrt(x*x + y*y + z*z);
}

void vec3::normalize() {
 float n = norm();
 x /= n; y /= n; z /= n;
}

 20/25

int main() {
 vec3 p = {1.0f, 2.0f, 5.0f};

 std::cout << p.norm(); // appel méthode

 p.normalize();
}

const après méthode : ne modifie pas l'objet
Syntaxe implémentation : Classe::methode()

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/01_principes/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html

Classes : constructeurs et destructeur
Constructeur : initialise l'objet à sa création
Destructeur : exécuté à la destruction de l'objet

En général: rien à faire sur des objets simples

struct vec3 {
 float x, y, z;

 vec3(); // constructeur par défaut
 vec3(float v); // constructeur personnalisé
 ~vec3(); // destructeur
};

vec3::vec3() : x(0), y(0), z(0) { }
vec3::vec3(float v) : x(v), y(v), z(v) { }
vec3::~vec3() { std::cout << "Goodbye"; }

int main() {
 vec3 a; // appelle vec3()
 vec3 b(1.0f); // appelle vec3(float)
} // appelle ~vec3() pour a et b

= default : génère l'implémentation automatique

struct vec3 {
 float x, y, z;
 vec3() = default;
 ~vec3() = default;
};

 21/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/02_declaration/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html

Fonctions membres vs fonctions externes
Le choix entre méthode et fonction externe est libre.

// Fonction membre (méthode)
struct vec3 {
 float x, y, z;
 float norm() const {
 return std::sqrt(x*x + y*y + z*z);
 }
};

vec3 p = {1, 2, 3};
float n = p.norm(); // appel via objet

 // Fonction externe (non-membre)
struct vec3 {
 float x, y, z;
};

float norm(const vec3& p) {
 return std::sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
}

vec3 p = {1, 2, 3};
float n = norm(p); // appel comme fonction

 22/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/03_constructeur/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html

Lecture/écriture de fichiers
Bibliothèque <fstream> pour manipuler des fichiers :
std::ifstream : lecture (input)
std::ofstream : écriture (output)

#include <fstream>

// Écriture
std::ofstream file("data.txt");
if (file.is_open()) {
 file << "Hello" << std::endl;
 file << 1.5f << " " << 2.0f << std::endl;
 file.close();
}

 #include <fstream>

// Lecture
std::ifstream file("data.txt");
if (file) {
 std::string line;
 std::getline(file, line); // lit une ligne
 float x, y;
 file >> x >> y; // lit valeurs
 file.close();
}

Modes file("data.txt", mode) :
std::ios::app (ajout)
std::ios::binary (binaire)

 23/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/12_classes/04_fonctions_membres/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html

Organisation du code
Trois types de fichiers :
.hpp Déclarations, signatures de fonctions partagés avec d'autres fichiers
.cpp Implémentation des fonctions et classes décrites dans .hpp
main.cpp Point d'entrée du programme, utilisation des fonctions et classes

// vec3.hpp
#pragma once
struct vec3 {
 float x, y, z;
 float norm() const;
};

// vec3.cpp
#include "vec3.hpp"
#include <cmath>
float vec3::norm() const {
 return std::sqrt(x*x+y*y+z*z);
}

// main.cpp
#include "vec3.hpp"
int main() {
 vec3 v = {1, 2, 3};
 std::cout << v.norm();
}

#pragma once : évite les inclusions multiples
#include "file.hpp" : copie-colle le contenu du fichier

 24/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/13_fichiers/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/15_compilation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/15_compilation/index.html

Compilation
Compilation : .cpp → compilateur → .o → linker → exécutable

Un seul fichier
g++ main.cpp -o programme

Plusieurs fichiers
g++ -c main.cpp # main.o
g++ -c vec3.cpp # vec3.o
g++ main.o vec3.o -o prog

CMake : génère Makefile (Linux) ou projet VS (Windows)

mkdir build && cd build
cmake ..
make # Linux/MacOS

Linux/MacOS : g++ ou clang++
Windows : Visual Studio (MSVC)

 25/25

file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html
file:///Users/damien/drives/damien/teaching/2025_2026/csc_43043/csc_43043/course_slides/_site/01_cpp_introduction/pdf/14_organisation/index.html

