
Elastic models

Spring structure
Numerical solution of ODE
Cloth simulation
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Numerical solution of ODE
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General formulation
Consider relation given a system of first order differential equation

Mechanical systems are often expressed as
- single equation of second order in 
- system of first order in 

In general, we can write

If  is an affine function in 

When  is constant through time
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p

u = (p, v)

u (t) =′ F(u(t), t)

F u

u (t) =′ A(t)u(t) + b(t)

A

u (t) =′ Au(t) + b(t)
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Example: Free fall under gravity
- Force 
- Second order differential equation: 

- First order system 

- Linear system 

- Exact solution known: 

Note: variables are vectors - matrix can be expressed by block, or per components.
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Example: 1D spring (/Harmonic oscillator)
- Force ,  spring stiffness,  rest length
- Second order differential equation: 

- First order system 

- Linear system 

- Exact solution known: 

, , 
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Example: 3D mass spring
- Force ,  spring stiffness,  rest length
- Second order differential equation: 

- First order system 

- Not linear
- No simple explicit solution
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Numerical solution
1st order Explicit Euler
Naive numerical scheme: Approximation of the derivative

In the linear case

Pro : very easy to implement

Is  a good approximation of the true solution  ?
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Explicit Euler - study case
Free fall under gravity

- True solution 

- Numerical scheme: 

- Numerical solution: 

 Not exact : Error 
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Explicit Euler - study case
1D spring

- True solution: permanent oscillation

- Numerical scheme: 

 

red: true solution
red: numerical solution

 

- Numerical solution diverge to 
- Worse than bad accuracy for Graphics
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Explicit Euler - study case
1D spring: Analysis of the system energy

- Energy 

, 

 gain of energy
 divergence
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Stability of a numerical method - general definition
- Classical stability of a method studied on , .

- The true solution  converge if .
- For linear system,  refers to eigenvalues of .
- For non linear system,  refers to eigenvalues of the Jacobian of 

- A numerical method is unconditionnaly stable if 
 stable discrete solution.

- Otherwise, it is conditionnally stable/unstable.
- Region of stability:

Set of conditions on  such that the discrete solution doesn't diverge.

Rem.
- A numerical solution can diverge even when the true ODE solution converge when using unstable numerical method.
- Converseley, a numerical solution can converge even when the true ODE solution diverge when using stable numerical method.
- Stability  Accuracy.
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u (t) =′ λu(t) λ ∈ C
(t) =u~ exp(λ t) R ​(λ) ≤e 0
λ A

λ F

R ​(λ) ≤e 0
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λ

! =

- true solution diverge
- numerical solution diverge

- true solution diverge
- numerical solution converge

(Not catastrophic in graphics)

- true solution converge
- numerical solution converge

- true solution converge
- numerical solution diverge

(Catastrophic in graphics)
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Stability analysis of explicit Euler

 using explicit Euler

 Stable if  (conditionnal stability)

: Interior of a disc centered on  with radius 

Rem. For 1D elastic spring

 
 Explicit euler is always unstable on the elastic spring problem.
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Numerical integration of ODE
General formulation: , .

Explicit Euler

(+) Easy to implement
(-) Worst scheme in all cases (divergence, low accuracy)

Explicit Runge-Kutta

(+) Good accuracy
(+) Efficient to apply
(+/-) Stability OK for non-stiff problem, diverge on stiff
problem
(-) Artificial damping for constant energy system

 

Implicit methods

(+) Good to deal with stiff problem - very stable
(-) Add numerical damping (converge even if solution
oscillates)
(-) Hard/computationally costly to apply on non linear
problem

Symplectic integrator

(+) Handle well constant energy system, preserves energy
(Hamiltonian systems)
(+) Simple and efficient to implement
(-) Less accurate than RK
(-) Diverge on stiff problem
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Introduction to symplectic methods
Standard approaches trade-off

- Explicit methods: (+) Simple to compute, (-) limited stability
- Implicit methods: (-) Hard to compute (especially on non linear functions), (+) very stable
- Oscillatory systems are not easy to model

(-) Numerical solution either diverge or converge.

Symplectic approach
- Remark: Mechanical systems have position and velocity variables

- Derivative of position is linear w/r velocity
- Derivative of velocity is more complex (forces - non linear)

 General idea: separate treatment of velocity and position

Semi-implicit:
- Implicit scheme for position  (linear part)
- Explicit scheme for velocity  (non linear part)

 In practice: use velocity  to evaluate .
Pro

(+) As simple as explicit method to implement
(+) Improved stability
(+) Well adapted to oscillatory systems
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Semi implicit method
Simplest semi-implicit method: Semi-implicit Euler / Verlet

General case

Application to classical mechanical cases

(+) Trivially easy to convert explicit Euler to semi-implicit Euler

Expressed using positions only

1st order accurate (like explicit/implicit Euler) in position and speed.
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⇒ ​{ v = v + hF (p , t )/mk+1 k k k

p = p + h vk+1 k k+1

p =k+1 p +k h(v +k hF (p , t ))k k

p =k+1 p +k h ​ + hF (p , t )/m(
h

p −pk k−1
k k )

⇒ p =k+1 2 p −k p +k−1 h F (p, t)/m2
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Stability on oscillatory system
1D spring system: 

Stable and permanent oscillation when 

Q. How can we demonstrate it ?

Note:  only valid for one 1D spring. Coupled 3D springs may require smaller value of h.
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F (p , v , t ) =k k k −K pk

p =k+1 2 p −k p −k−1 h K/mp2 k

⇒ p =k+1 (2 − h K/m) p −2 k pk−1

h < ​ =
​K/m

2
​

ω
2

h < 2/ω
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Use of semi-implicit
Ex. Elastic Spring: 

Explicit Euler
for(int k=0; k<N; ++k) {
    p = p + h*v;
    v = v + h * F/m;
}

(-) Always diverges for elastic problem

Semi-Implicit Euler
for(int k=0; k<N; ++k) {
    v = v + h * F/m;
    p = p + h*v;
}

(+) Permanent oscillation for sufficiently small .

 Extremly simple change !
Big gain in stability
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F (p) = −K(p− L ​)0

h

⇒
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Comparison between approaches
Small 

True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 - best behavior (undistinguishable from true solution)
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h = 0.2/ω
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Comparison between approaches
Larger 

Temporal evolution of Temporal evolution of energy 

True solution , Semi-implicit Euler , Velocity Verlet , Runge-Kutta RK4

- RK4 loose energy and  converge toward 
- Symplectic integrator keep oscillating
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h = 1.0/ω

pk E = 1/2m (v ) +k 2

1/2K(p )k 2

pk l0
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Material model
Elasticity: Shape goes back toward its original rest position when external forces
are removed.

-Purely elastic models don't loose energy when deformed (potential  kinetic)

Plasticity: Opposite of elasticity. Plastic material don't come back to their original
shape (/change their rest position during deformation).

- Ductile material - can allow large amount of plastic deformation without
breaking (plastic)
- Brittle - Opposite (glass, ceramics)

Viscosity: Resistance to flow (usually for fluid, ex. honey)

In reality
- Elasto-plastic materials: Allow elastic behavior for small deformation, and plastic
at larger one.
- Visco-elastic materials: Elastic properties with delay.
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Modeling elastic shapes with particles
Spring mass systems

- Particles (position, velocity, mass): samples on shape
- Springs : link closed-by particles in the reference shape

1D curve structure 2D surface structure 3D volume structure
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Spring structure
How to model spring connectivity ?
- Structural springs: 1-ring neighbors springs (  mesh edges)

(+) Limit elongation/contraction, (-) Allows shearing, and bending

 Add extra springs connectivity
- Shearing springs: Diagonal links
- Bending springs: 2-ring neighborhood
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≃

⇒
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Cloth Simulation
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Mass-spring cloth simulation
- Particles are sampled on a  grid.

- Each particle has a mass  ( )
- Set structural, shearing and bending springs.
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N × N

m m ​ =cloth N m2
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Forces
- On each particle: gravity + drag + spring forces
- 

- : neighborhood of particle 
- : rest length of spring 

Associated ODE 
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F ​(p, v, t) =i m ​ g −i μ v ​(t) +i ​K ​ ∥p ​(t) − p ​(t)∥ − L ​ ​

j∈V ​i

∑ ij ( j i ij
0 )

∥p ​(t) − p ​(t)∥j i

p ​(t) − p ​(t)j i

V ​i i

L ​ij
0 ij

∀i, ​{ p ​(t) = v ​(t)i
′

i

v ​(t) = F ​(p, v, t)/m ​i
′

i i

Q. How can we model the effect of the wind ?
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Note on Mass-Spring numerical solution
- Non-linear ODE

- Large  : good length preservation, but stiff ODE
 divergence of explicit schemes.

- Avoid explicit Euler (divergence)

- Semi-implicit Euler/Verlet works fine for low 
Semi-implicit Euler + PBD allows simple integration + stable stiff springs
[Muller et al. PBD , Inextensible clothing in Computer Games ]

- RK4 more accurate (but higher complexity than Verlet)

- Implicit Euler : requires linearization, but very stable
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K ​ij

⇒

K ​ij
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Collisions
- Simple approach : Handled as collision between particles and shapes

(+) Simple and efficient
(-) Collision may still appears within a triangle

 Simplest solution: take an -margin around each collider.
Or Exaustive approach: edges + faces (more coslty).
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⇒ ϵ
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Detecting self collision
Handled as moving point in collision with moving triangle
Inputs
- Triangle  , a point 
- Each position 

Computing intersection
Necessary condition
- Find  such that  is in triangle plane

: normal of the triangle at time 

Sufficient condition
- Check  is inside the triangle

, 

[ X. Provot. Collision and self-collision handling in cloth model dedicated to design garments. Graphics Interface 1997. ]
[ R. Bridson et al. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM SIGGRAPH 2002 ]
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P ​(t)P ​(t)P ​(t)1 2 3 P (t)
P ​(t) =k P ​(0) +k t v ​P ​k

t ​ ∈i [0,h] P (t ​)i
(P (t ​) −i P ​(t ​)) ×1 i n(t ​) =i 0
n(t ​)i t ​i

P (t ​)i
P (t ​) =i αP ​(t ​) +1 i βP ​(t ​) +2 i γP ​(t ​)3 i

(α,β, γ) ∈ [0, 1]3 α + β + γ = 1
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Limitation of mass spring model and continuous model
- Does mass-spring system converge toward a unique solution when sampling increase ?

 No :(
Depends on the connectivity  bad for physical accuracy

Corollary
- Mass-springs work well for grid-mesh structure (draping)
- Less for arbitrary triangular meshes

1st improvment: Change toward energy formulation for
bending springs (limits locking effect)

, : curvature
[Cho et al, Stable but Responsive Cloth, ACM SIGGRAPH 2002]
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Triangle as continuous elements
- Defining Bending Energy between triangles

- 

[E. Grinspun et al., Discrete Shells, SCA 2003]
(or expressed using forces in [R. Bridson et al., SCA 2003] )

- Going toward full FEM numerical resolution
- B. Thomaszewski et al. [SCA 2006], [VRIPHYS 2008], [EG 2009].
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