
Fundamental models
1- Particles
2- Rigid bodies
3- Continuum material
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Deformation of a continuous shape
Every part of the shape can be deformed

ex. Describing elastic shapes, visco-elastic shapes, fluids, etc.

Two ways to describe the deforming object

1. Lagrange representation
Positions follow the object deformation

2. Euler representation
Positions are fixed in 3D space

F(x,t)

u(x,t)
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Deformation the Lagrangian description
Deformation map  such that 

 position in the reference undeformed shape
 position in the deformed configuration.

Deformation Gradient 

- 
- Characterizes the local deformation associated to 

Position  is mapped into 

- 
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Strain
Deformation gradient  describe both

- Rigid transformation (rotation) - not related to material effort
- Any other deformation inducing local length change - related to material effort

Strain  is a measure of deformation ignoring rigid transformation.

Several possible measure of strain
- Green strain tensor 

(+) If  is a rotation   
(-) Non linear in 

- Linearized Cauchy strain 
Used for small deformations
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F

ϵ

ϵ = ​ (F F −2
1 T Id)

φ F = R ⇒ ϵ = 0
p

ϵ = ​ (F +2
1 T F ) − Id
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Stress
Stress  describes internal forces (per area unit) induced by the local
deformation (strain) in any direction
Constitutive Relation: Relation between stress and strain, characterize a type of
material.

For linear constitutive relation:
, : stiffness tensor (81 coefficients)

Strain energy/elastic potential energy: 

For homogeneous isotropic elastic material, constitutive relation simplifies to
, : Lamé parameters

Related to common mechanical modulus : Young' modulus  and Poisson's ratio 
, 
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σ ∈ R3×3

σ ​ =ij ​C ​ ϵ ​
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Evolution equation
Fundamental principle of dynamics in the entire volume 
Change of momentum = External forces (in volume) + Traction (stress applied on exterior surface normals)

Using divergence theorem 

Equation in volume satisfied at each position 
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Euler formulation
In Euler formulation quantities are expressed at fixed position in 3D space.
Deformation described by velocity  at a given 3D fixed point  at time .

- Do not require anymore a reference shape
- Usefull for heavily deforming shapes (ex. fluids, gaz).

- Change of speed during 

Called material derivative.

- Similarily to Lagrangian derivation:
- Strain-rate tensor  (rate of change of deformation in a neighborhood of a point)

expressed with respect to : 
- Stress-rate tensor  (rate of change of direction force per area in a neighborhood of a point).
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Equation of motion for a fluid
- Fundamental principle of dynamics on linear momentum

.  The term  is called advection.

- External force: weight 
- Stress decomposed into

 (pressure acts along normal of surface elements)
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ρ ​ =
dt
du

F + div(σ)

⇒ ρ ​ =
∂t
∂u

F + div(σ) − ρ (u ⋅ ∇)u (u ⋅ ∇)u

F = ρ g

σ = σ ​ +viscous σ ​pressure

σ ​ =pressure −p Id

ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u + div σ ​ − p Id( viscous )

⇒ ρ ​ =
∂t
∂u

ρ g − ρ u ⋅ ∇u − ∇p + div σ ​( viscous)
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Navier-Stokes equation
- Isotropic Newtonian fluid  Linear (scalar) relation between strain-rate  and stress-rate 

- ,  constant viscosity parameter
- Incompressible fluid  

Equation of motion

- Noting that 
- And 
- Set 

Navier-Stokes equation for incompressible Newtonian fluid.
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⇒ ϵ σ ​viscous

σ ​ =viscous 2μ ϵ = μ ∇u + ∇u( T ) μ

⇒ div(u) = 0

⇒ ρ ​ =
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ρ g − ρ u ⋅ ∇u − ∇p + div μ ∇u + ∇u( ( T ))

div(∇u ) =T ∇ div(u) = 0
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⇒ ​ =
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ρ
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Animating fluids (I)
Stable Fluid
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Solving Navier-Stokes on grid
"Brute force" approach

- Rectangular grid filled with fluid
- Use finite differences on the grid for Navier-Stokes equation

(-) Stability conditions
(-) Loose advection details on the grid
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​ =
∂t
∂u

− ​ ∇p +
ρ

1
f − (u ⋅ ∇)u + ν△u

div(u) = 0

[ Modeling the Motion of a Hot, Turbulent Gas. N Foster
and D. Metaxas. SIGGRAPH 1997 ]
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Stable Fluids - Idea
Well known improvement: Jos Stam, Stable Fluids, ACM SIGGRAPH 1999

- : Pressure term only used to ensure divergence free
- Similar to Lagrange multipler for constraints

1st Idea
Remove pressure term
Replace by explicit projection on divergence free vector field 

2nd Idea
Splitting: Compute each terms one after the other
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​ =
∂t
∂u

f − (u ⋅ ∇)u + ν△u − ​ ∇p
ρ

1

1/ρ ∇p

P

⇒ ​ =
∂t
∂u

P(f − (u ⋅ ∇)u + ν△u)

u ​u ​ ​u ​ ​u ​ ​uk

​

f

addforces

​→ 1
k

​

ν△u

diffuse

​→ 2
k

​P
project

​→ 3
k

​(u⋅∇)u
advect

​→ k+1

[ Stable Fluids. J. Stam. SIGGRAPH 1999 ]
[ Real Time Fluid Dynamics for Games. J. Stam.
Game Dev. Conf. 2003 ]
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Stable Fluids - General Algorithm

1. Solve 
diffusion

2. Enforce
divergence 
free

3. Advect u
along itself

1. Solve 
diffusion
(optionnal)

3. Advect f
along u

Velocity 
u(t)

Scalar field 
f(t)

t = t+h

u(t+h)

f(t+h)u(t)
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1 - Diffusion
Use finite difference on 

Notation: 

Explicit schemes may oscillates/diverge for large time steps
 Use implicit scheme for unconditional stability

Assuming 

Use Gauss-Seidel iterative method to solve the sparse linear system

Initialize 
for 
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⇒

​ =
Δt

f ​ − f ​x,y
k+1

x,y
k

ν ​ + ​(
(Δx)2

f ​ − 2 f ​ + f ​x+1,y
k+1

x,y
k+1

x−1,y
k+1
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(1 + 4 νΔt) f ​ −x,y
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k+1 fx,y
k

f =k+1 fk

i = 1..N ​max

f ​ =x,y
k+1

​ (f ​ +1+4 a
1

x,y
k a(f ​ +x−1,y

k+1 f ​ +x+1,y
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2 - Advection
Advection = move some function along given velocity .

- Advecting a scalar field  along 

- Advecting a vector field  along 
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u

f u

​ (p, t) +
∂t
∂f

u(p, t) ⋅ ∇f = 0

f u

​ (p, t) +
∂t
∂f

(u(p, t) ⋅ ∇) f = 0

- In Navier-Stokes advect the velocity
itself 
- Can also advect density, color, texture
coordinates, etc. to visualize the motion.

f = u
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2 - Computing advection
Advecting generic value  along 

Idea Compute value of  at time  at fixed position grid
 in moving back at .

Value of  advected at point  at time  was at position
 at time .

 is not a grid point coordinates: Use interpolation
Can use Bilinear interpolation
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f u

f t

p t − Δt

f p t

p ​ =prev p − Δt v(p, t) t − Δt

⇒ f(p, t) = f(p ​, t −prev Δt)

p ​prev

f(p ​) =prev (1 − α) (1 − β) p ​ +00 (1 − α)β p ​ +01 α (1 − β) p ​ +10 αβ p ​11
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3 - Divergence Free Vector Field

Before projection:

After projection:
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div(v) = 0

v ​ +x+1,y
x v ​x−1,y

x

+v ​ +x,y+1
y v ​ =x,y−1

y 0
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3 - Projection to divergence free vector field
Consider a general vector field 
Helmoltz decomposition: 

- : Divergence free vector field such that 
- : Gradient field ,  scalar field.

 satisfies a Poisson equation

Method- Given an input field 
1. Compute  as solution of 
2. Compute 
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w

w = u + v

u div(u) = 0
v v = ∇q q

q

div(w) = ​ +

=0

​div(u) div(v) ⇒ div(w) = ​

△q

​div(∇q)

w

q △q = div(w)
u = w − ∇q
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3 - Projection to divergence free vector field (Algo)
Input vector field 
Note: we assume in the following 

1 - Compute 

2 - Compute  in solving 

ex. Numerical iterations using Gauss Seidel

Initialize 
For 

3 - Compute 
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w = (w ,w )x y

Δx = Δy = 1

d = div(w)
d ​ =x,y (w ​ −x+1,y

x w ​ +x−1,y
x w ​ −x,y+1

y
w ​)/2x,y−1

y

q △q = d

(q ​ +x+1,y q ​ −x−1,y 2 q ​) +x,y (q ​ +x,y+1 q ​ −x,y−1 2 q ​) =x,y d ​x,y

⇒ 4q ​ =x,y q +x+1,y q ​ +x−1,y q ​ +x,y+1 q ​ −x,y−1 d ​x,y

q = 0
i = [1..N ​]max

q ​ =x,y 1/4 q ​ + q ​ + q ​ + q ​ − d ​( x+1,y x−1,y x,y+1 x,y−1 x,y)

u = w − ∇q

u ​ =x,y w ​ −x,y q ​ − q ​ , q ​ − q ​ /2( x+1,y x−1,y x,y+1 x,y−1)
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Handling boundaries
Boundaries , , ,  need special
care

- For density
Assume value  continuity on the boundary

Row/Column ,  etc.

- For velocity: 
Assume reflexion on walls

Row: 
Column: 

- In all cases: Average value for corners
, etc.
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x = 0 x = N ​ −x 1 y = 0 y = N ​ −y 1

C0

f ​ =x,0 f ​x,1 f ​ =0,y f ​1,y

f = (f , f )x y

f ​ =x,0 (f ​, −f ​)x,1
x

x,1
y

f ​ =0,y (−f ​, f ​)1,y
x

1,y
y

f ​ =0,0 (f ​ +1,0 f ​)/20,1

Copy/Reflexion

Average
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Stable fluids example

Amanda Ghassaei    21/35

https://github.com/amandaghassaei/FluidSimulation
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Animating fluids
SPH
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SPH - Smoothed Particle Hydrodynamics
Pure Lagrangian approach.

- Sample the fluid volume with particles
- Build a continuous field from local averaging around samples

Use some local weighting kernel 
- Express derivatives/Navier-Stokes on the continuous field

Advantages
(+) Particle based - can interact with other models
(+) Scalable

Initial proposed in Astronomy field
[ L. Lucy, A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977. ]
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W
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Sampling and density
How-to build a continuous field from arbitrary sampled particles ?

Consider arbitrary continuous field 
Def. of convolution: 

1. Consider  a smooth kernel with 

Low pass filter applied to A

2. Discrete sampling on 

: small volume associated to 
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A(p)
A(p) = (A ⋆ δ)(p) = A(q) δ(p −∫Ω q) dq

W ​h ​ W ​(p) dp =∫Ω h 1
A(p) ≃ (A ⋆ W ​)(p) =h ​ A(q)W ​(p −∫Ω h q) dq

p ​j

A(p) = ​ A(p ​)W ​(p −∑j j h p ​)V ​j j

V ​j p ​j

pj

*

*
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SPH for Navier Stokes
Lagrangian representation on particle 

Objective:
1. Express  using SPH formulation
2. Then integrate: ex. 

Generic SPH representation:
Arbitrary field  at position : 
For a particle of total mass  in the volume :   

Usually  are distance function : 
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i

m ​ ​ =i dt
dv ​i

​ −

F ​weight

​m ​ gi ​ +

F ​pressure

​​ ∇p ​ ​

ρ ​i

m ​i
ri ​

F ​viscosity

​m ​ ν△v ​i i

ρ ​, ∇p ​ ​, △v ​i ri i

v ​ =i
k+1 v ​ +i

k Δt F ​ + F ​ + F ​ /m ​( weight pressure viscosity) i

A p ​i A(p ​) =i ​ A(p ​)W ​(p ​ −∑j j h i p ​)V ​j j

m ​i V ​i ρ ​V ​ =i i m ​i ⇒ A(p ​) =i ​ A(p ​)m ​/ρ ​ W ​(p ​ −∑j j j j h i p ​)j

W ​h A(p ​) =i ​A(p ​)m ​/ρ ​ W ​(∥p ​ −
j

∑ j j j h i p ​∥)j

[ Desbrun and Cani, Smoothed Particles: A new paradigm for animating highly deformable bodies, EGCAS
1996 ]
[ M. Muller et al., Particle-Based Fluid Simulation for Interactive Applications, SCA 2003 ]
[ M. Ihmsen et al., SPH Fluids in Computer Graphics, EG STAR 2014 ]
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Density
: Replace A(p) as 

 

Choice of weight functions
Use a smooth polynomial:
ex. 
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ρ ​i ρ

ρ(p ​) =i ​ ρ(p ​)m ​/ρ ​ W ​(∥p ​ −∑j j j j h i p ​∥)j

⇒ ρ ​ =i ​m ​ W ​(∥p ​ −
j=0

∑
N−1

j h i p ​∥)j

W ​(d) =h
poly6

​ (h −64 π h9
315 2 d ) 0 ≤2 3 d ≤ h

pj

pi
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Pressure

1. Use symetric gradient b/w (i,j) 

2. Express the pressure as a function of the density 
Simple approximation: 

- : Stiffness property
- : Rest density of the fluid

3. Weight function
Pressure is used to avoid particles to group together

Avoid local maxima  non smooth "spiky" function at 
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F ​ =pressure − ​ ∇p ​ ​

ρ ​i

m ​i
ri

F ​ =pressure − ​ ∇(p ​ ​ +ρ ​i

m ​i
ri p ​ ​)/2rj

F ​ =pressure − ​ ​m ​ ​ ∇W ​(∥p ​ −
ρ ​i

m ​i

​

j=0
j=i

∑
N−1

j 2 ρ ​j

p ​ ​ + p ​ ​rj ri
h i p ​∥)j

ρ

p ​ ​ =ri s (ρ ​ −i ρ ​)0

s

ρ ​0

⇒ 0

W ​(d) =h
spiky

​ (h −
π h6
15 d) 0 ≤3 d ≤ h

∇W ​(p ​ −h
spiky

i p ​) =j − ​ (h −
π h6
45 ∥p ​ −i p ​∥) ​ 0 ≤j

2
∥p ​−p ​∥i j

p ​−p ​i j ∥p ​ −i p ​∥ ≤j h
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Viscosity

1. Use symetric laplacian b/w (i,j)
 -  viscosity depends on velocity differences

2. Weight function
Second derivative should remain positive.
Can use the spiky kernel
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F ​ =viscosity m ​ ν △v ​i i

F ​ =viscosity m ​ ν △(v ​ −i j v )i

F ​ =viscosity m ​ ν ​m ​ ​ △W ​(∥p ​ −i

​

j=0
j=i

∑
N−1

j
ρ ​j

(v ​ − v ​)j i
h i p ​∥)j

W ​(d) =h
spiky

​ h − d 0 ≤2πh6
15 ( )3

d ≤ h

△W ​(d) =h
spiky

​ h − d 0 ≤
πh6
45 ( ) d ≤ h

  
Increasing viscosity ν
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SPH Summary
Set initial conditions 

Compute values

- Density: 

- Pressure: 

Compute forces
- 

- 

- 

Time integration: 
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v ​i

ρ ​ =i ​m ​ W ​(∥p ​ −
j=0

∑
N−1

j h
poly6

i p ​∥)j
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SPH examples
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Muller 2003
M. Teschner 2012 - 20M particles
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Acceleration structure
SPH based on pair-wise interation  spatial sorting acceleration structure

- Uniform grid: simple and efficient.
- Verlet lists (wider neighborhood, updated every  steps only)
- List of vertices per cell, hash table for cell storage
- Spatial sorting for cache efficiency

 
M. Teschner
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SPH extensions
(+) Very versatile (interaction between any deforming shapes)

Not only fluids
(-) Not well understood accuracy
(-) Compressible

[ Solenthaler et al., Predictive-Corrective Incompressible SPH, ACM SIGGRAPH
2009 ]
[ Ihmsen et al, Implicit Incompressible SPH, IEEE TVCG 2013 ]

(-) Limited time step
[ Macklin and Muller, Position based Fluids, ACM SIGGRAPH 2013 ]

(-) Boundaries are hard to handle
[ Brand et al., Pressure Boundaries for Implicit Incompressible SPH, ACM TOG

2018 ]
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Bruno Levy

[ Macklin and Muller 2013 ] , [ Yu and Turk 2009 ]
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PIC/FLIP (Material Point Method)
Mix between particles and grid based approach.

- Particles: good for advection
- Grid: forces, pressure, viscosity

: velocity on particle
: velocity on grid

- PIC approach - Transfert velocity from grid to particles

- FLIP approach - Add velocity difference from grid to particles.

- PIC/FLIP : blending b/w two approaches

[ Y. Zhu and R. Bridson, Animating Sand as a Fluid, ACM SIGGRAPH 2005 ]
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PIC: Stable, smoothed-out

FLIP: Details, few dissipation
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MAC grid
MAC = Marker And Cell

Staggered grid b/w scalar and velocity
Widely used grid storage to handle velocity and scalar values.

- Store scalar (pressure, density), in the center of the cell
- Store velocity components  on the cell edges

Improves accuracy and stability
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PIC/FLIP Method
- Transfert particle velocity to the MAC grid (Store velocity  on grid)
- Evolve velocity on grid (pressure, forces, viscosity) excepted advection to 
- Add velocity difference  to particles using interpolation (FLIP approach)
- Blend particle velocity with interpolated grid velocity (PIC/FLIP)
- Advect particles along their new velocity

[F. Ferstl et al., EUROGRAPHICS 2016]
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